## Department of Mathematics Faculty of Engineering \&Technology

## V.B.S. Purvanchal University, Jaunpur Prepared by: Dr. Sushil Shukla Study Material

## On Ordinary Differential Equation of Higher Order which includes:

Linear differential equation of nth order with constant coefficients, Simultaneous linear differential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable, Reduction of order, Normal form, Method of variation of parameters, Cauchy-Euler equation, Series solutions (Frobenius Method).

## Differential Equation:

Consider the area of a rectangle $\mathrm{A}=\mathrm{x} \times \mathrm{y}$ so area depends upon the length and breadth of rectangle. So changing the length and breadth of the rectangle we get a new area or area changed. So Area of a rectangle depends on length and breadth of rectangle. So here length and breadth are independent variable and Area is dependent variable.

$$
\mathrm{A}=\mathrm{f}(\mathrm{x}, \mathrm{y})
$$

Similarly, we can take $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
The differentiation of $y$ with respect to $x$ is called derivative of $y$ with respect to $x$.
An equation involving independent variable, dependent variable and their derivative with respect to independent variable is called a differential equation.

For example, you may consider.
(1) $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
(2) $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=0$
(3) $\frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}=0$.
are differential equations, since they contains x as in independent variable, y as dependent variable and $\frac{d y}{d x}$ the derivative of y with respect to x .

Ordinary Differential Equation: If the differential equation contains only one independent variable then it is called an ordinary differential equation. If it contains more than one independent variable then it is called partial differential equation (1), (2) are ordinary differential equation and for partial differential equation you may consider $\quad y \frac{\partial A}{\partial x}+x \frac{\partial A}{\partial y}=C^{x}$ is partial differential equation as dependent variable A contains two independent variable x and y .
Order and Degree of a Differential Equation: Order of a differential equation is the order of highest derivative involved in the equation. For example in (2) the derivatives are $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ and in the these two highest order derivative is $\frac{d^{2} y}{d x^{2}}$ so order of this differential equation is 2 .
Order of (1) is 1.
Degree of a Differential Equation: Degree of a differential Equation is degree of highest order derivative involved in the equation when equation is free from radical and fractional powers.

Example. Differential equation (1) \& (2) are of first degree and (3) is of second degree as $\quad \frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}=0 \Rightarrow\left(\frac{d y}{d x}\right)^{2}+1+\left(\frac{d y}{d x}\right)^{3}=0$.

Linear Differential equation : A differential of the form $\frac{d y}{d x}+P y=Q$
where P and Q are functions of independent variable x (only) (But not y or constants) is called a linear Differential Equation.

It is said to be linear because the dependent variable y and its derivative w.r.t. x occurs only in Ist degree.

## Working Rule to solve linear differential equation of Ist order:

1. Arrange Given differential equation in the form $\frac{d y}{d x}+p y=Q$.
2. Write down its I.F. $=e^{\int P d x}$.
3. General solution of differential equation is $y .(I . F)=.\int Q(I . F) d x+$.$c .$

Example.: Solve the differential equation $\frac{d y}{d x}+\frac{3 y}{x}=\frac{1}{x^{4}}$.
Solution : Given differential equation is in Linear form with $P=\frac{3}{x}$ and $Q=\frac{1}{x^{4}}$. Hence I.F. $=e^{\int_{P d x}}=e^{\int P d x}=e^{3 \int \frac{1}{x} d x}=e^{3 \log x}=x^{3}$
Therefore General solution of differential equation is $y .(I . F)=.\int Q(I . F) d x+$.$c .$
$y .($ I.F. $)=\int Q($ I.F. $) d x+c \Rightarrow y x^{3}=\int \frac{1}{x^{4}}\left(x^{3}\right) d x+c$ where $c$ is arbitrary constant of integration.

Example: Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\operatorname{Cos} x$.
Solution : Given differential equation can be written as $\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\operatorname{Cos} x}{1+x^{2}}$ which is a linear differential equation with $P=\frac{2 x}{1+x^{2}}$ \& $Q=\frac{\cos x}{1+x^{2}}$
and its integrating factor is $e^{\int \frac{2 x}{1+x^{2}}} d x=1+x^{2}$.
Hence Required solution is

$$
\begin{aligned}
& y\left(1+x^{2}\right)=c+\int \frac{\operatorname{Cos} x}{1+x^{2}}\left(1+x^{2}\right) d x=c+\int \operatorname{Cos} x=C+\operatorname{Sin} x \\
& \text { or } y=\frac{c+\operatorname{Sin} x}{1+x^{2}} .
\end{aligned}
$$

## Equation Reducible to Linear form (Bernoulli's form)

Bernoulli equation is the form $\frac{d y}{d x}+p y=Q y^{n}$ $\qquad$ where P and Q are functions of x only.

This can be reduced to linear form by dividing it by $\mathrm{y}^{\mathrm{n}}$ and substituting

$$
\begin{equation*}
\frac{1}{y^{n-1}}=v \text { or } y^{1-n}=v \tag{2}
\end{equation*}
$$

Dividing by $y^{\mathrm{n}}$ equation (1) becomes $y^{-n} \frac{d y}{d x}+p y^{-n+1}=Q$

Now put $v=y^{1-n} \Rightarrow \frac{d v}{d x}=(1-n) y^{-n} \frac{d y}{d x}$
so (2) becomes $\frac{1}{(1-n)} \frac{d v}{d x}+p v=Q$
or $\frac{d v}{d x}+p(1-n) v=Q(1-n)$
which is a linear equation and can be solved.
Problem : Solve the differential equation $x \frac{d y}{d x}+y=x y^{3}$
Solution : Given equation can be written as $y^{-3} \frac{d y}{d x}+\frac{1}{x} y^{-2}=x$
Now put $y^{-2}=v \Rightarrow-2 y^{-3} \frac{d y}{d x}=\frac{d v}{d x}$
So (1) becomes $-\frac{1}{2} \frac{d v}{d x}+\frac{v}{x}=1$

$$
\begin{equation*}
\text { or } \frac{d v}{d x}-2 \frac{v}{x}=-2 \tag{2}
\end{equation*}
$$

$\qquad$
which is a linear equation
and its I.F. $=e^{\int-2 / x^{d x}}=e^{-2 \log x}=e^{\log \frac{1}{x^{2}}}=\frac{1}{x^{2}}$
so solution of equation (2) is $v \cdot \frac{1}{x^{2}}=\int-2 / x d x+c$
putting the value of $v$ we have $\frac{1}{x^{2} y^{2}}=\frac{2}{x}+c$ which is required solution.

Exact Differential Equation: If a differential equation is obtained by direct differentiation of its primitive (solution) without any other process like elimination or reduction then it is exact differential equation. For example, $x d y+y d x=0$ is an exact differential equation since it is obtained by direct differentiation of $x y=c^{2}$ which is its primitive.

In other words, (W.M.) : A differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is said to be an exact differential equation if the condition $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ is satisfied,
where $\frac{\partial M}{\partial y}$ is differential coefficient of $M$ w.r.t $y$ keeping $x$ constant
and $\frac{\partial N}{\partial x}$ is differential coefficient of M w.r.t x keeping y constant.

## Method for solving exact Differential equation (W.M.):

Step-I: Integrate M w.r.t. x keeping y as constant.
Step-II: Integrate w.r.t. y , those terms of N which not contain x .
Step-III: Result I + Result II $=$ Constant is the solution.
Example: Solve the differential equation

$$
\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0 .
$$

Solution : Here $M=5 x^{4}+3 x^{2} y^{2}-2 x y^{3}, \quad \& N=2 x^{3} y-3 x^{2} y^{2}-5 y^{4}$
Check

$$
\text { so } \frac{\partial M}{\partial y}=6 x^{2} y-6 x y^{2} \quad \& \quad \frac{\partial N}{\partial x}=6 x^{2} y-6 x y^{2}
$$

since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ hence given equation is exact.
Now $\int M($ treating yas const an $t) d x+\int($ items of N not conting x$) d y=C$
or $\int\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\int\left(-5 y^{4} d y\right)=C$
$\int\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\int\left(-5 y^{4} d y\right)=C$
$5 \frac{x^{5}}{5}+3 y^{2} \frac{x^{3}}{3}-2 y^{3} \frac{x^{2}}{2}-5 y^{4} \frac{y^{5}}{5}=C$
$x^{5}+x^{3} y^{2}-x^{2} y^{3}-y^{5}=C$.
Integrating factor: Sometimes an equation which is not exact can be made exact differential equation, by multiplying some suitable function of $x$ and $y$. This function is known as integrating factor of the differential equation.
For example $(y-x) x^{2} \operatorname{Sin} y d y+\left(1+x^{2}\right) d x=0$ is not exact as $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
But after multiplying by $\frac{1}{x^{2}}$ given equation becomes exact differential equation.

## Rules for Finding Integrating Factor:

Rule-I : When the equation $M d x+N d y=0$ is homogeneous and $M x+N y=0$ then integrating factor of the equation is $\frac{1}{M x+N y}$

Problem : Solve the differential equation $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
Here $M=x^{2} y-2 x y^{2}$ and $N=-x^{3}+3 x^{2} y$

$$
\frac{\partial M}{\partial y}=x^{2}-4 x y, \quad \frac{\partial N}{\partial x}=-3 x^{2}+6 x y
$$

since $\frac{\partial m}{\partial y} \neq \frac{\partial N}{\partial x} \Rightarrow$ Given equation is not exact.
Given equation is homogeneous and

$$
\begin{gathered}
M x+N y=\left(x^{3} y-2 x^{2} y^{2}\right)+\left(-x^{3} y+3 x^{2} y^{2}\right) \\
=x^{2} y^{2} \neq 0
\end{gathered}
$$

So I.F. $=\frac{1}{M x+N y}=\frac{1}{x^{2} y^{2}}$
Multiplying given equation by $\frac{1}{x^{2} y^{2}}$, we get

$$
\left(\frac{1}{y}-\frac{2}{x}\right) d x-\left(\frac{x}{y^{2}}-\frac{3}{y}\right) d y=0
$$

which is exact equation and Its solution is

$$
\int\left(\frac{1}{y}-\frac{2}{x}\right) d x+\int \frac{3}{y} d y=c
$$

or $\frac{x}{y}-2 \log x+3 \log y=c$
or $\frac{x}{y}+\log \frac{y^{3}}{x^{2}}=c$ is required solution.
Rule-II : If the equation is of the form $f_{1}(x y) \cdot y d x+f_{2}(x y) x d y=0$ and $M x-N y \neq 0$ then the Integrating factor of the equation is $\frac{1}{M x-N y}$

Problem : Solve the differential equation $\left(y-x y^{2}\right) d x-\left(x+x^{2} y\right) d y=0$.
Solution : Given differential equation can be written as $(1-x y) y d x-(1+x y) x d y=0$ Here $M=x y-x y^{2}, N=-x-x^{2} y$

$$
M x-N y=\left(x y-x^{2} y^{2}\right)-\left(-x y-x^{2} y^{2}\right)=2 x y \neq 0
$$

So Integrating factor $=\frac{1}{M x-N y}=\frac{1}{2 x y}$.
Multiplying Given equation by I.F. we get

$$
\begin{aligned}
& \left(\frac{1}{x}-y\right) d x-\left(\frac{1}{y}+x\right) d y=0 \text { which is exact and its solution is } \\
& \int\left(\frac{1}{x}-y\right) d x+\int-\frac{1}{y} d y=c
\end{aligned}
$$

or $\log x-x y-\log y=c \Rightarrow \log \frac{x}{y}-x y=C$.
Rule-III : If the equation $M d x+N d y=0$ and $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x say $\mathrm{f}(\mathrm{x})$ then I.F. $e^{\int f(x) d x}$.

Problem : Solve the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$
Solution : $M=x^{2}+y^{2}+2 x, N=2$

$$
\frac{\partial M}{\partial y}=2 y, \frac{\partial N}{\partial x}=2
$$

so $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{1}{2 y}(2 y-1)=1$ which is a function of x
I.F. $=e^{\int 1 d x}=e^{x}$

Multiply by $\mathrm{e}^{\mathrm{x}}$ we get $e^{x}\left(x^{2}+y^{2}+2 x\right) d x+e^{x} 2 y d y=0$ which is exact and its solution is $\int e^{x}\left(x^{2}+y^{2}+2 x\right) d x+\int 0 d y=C$.

Rule - IV : If the equation $M d x+N d y=0$ and $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$ is function of y say $\mathrm{f}(\mathrm{y})$ then I.F. $=e^{\int f(y) d y}$.
Problem: Solve the differential equation

$$
\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0
$$

Solution : Here $M=3 x^{2} y^{4}+2 x y, N=2 x^{2} y^{3}-x^{2}$

$$
\frac{\partial M}{\partial y}=12 x^{2} y^{3}+2 x, \quad \frac{\partial N}{\partial x}=6 x^{2} y^{3}-x^{2}
$$

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{M}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) & =-\frac{\left(6 x^{2} y^{3}-x^{2}\right)-\left(12 x^{2} y^{3}+2 x\right)}{3 x^{2} y^{4}+2 x y} \\
& =\frac{-2\left(3 x^{2} y^{3}+2 x\right)}{y\left(3 x^{2} y^{3}+2 x\right)}=\frac{-2}{y} \\
\text { I.F. }=e^{\int f(y) d y} & =e^{-\int 2 / y d y}=e^{-2 \log y}=\frac{1}{y^{2}}
\end{aligned} .
\end{aligned}
$$

Multiplying by $\frac{1}{y^{2}}$, equation becomes

$$
\left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\left(2 x^{3} y-\frac{x^{2}}{y^{2}}\right) d y=0
$$

which is exact diff equation and its solution is

$$
\int\left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\int 0 d y=C
$$

or $x^{2}+y^{2}+\frac{x^{2}}{y}=C$ which is required solution.
Homogeneous Equation : An equation of the form $\frac{d y}{d x}=\frac{f_{1}(x, y)}{f_{2}(x, y)}$ is called a homogeneous equation, where $f_{1}(x, y)$ and $f_{2}(x, y)$ are homogeneous functions of same degree in $x$ and $y$ that is $f_{1}(x, y)=x^{n} f_{1}(y / x)$

$$
\begin{gather*}
\mathrm{f}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{n}} \mathrm{f}_{2}(\mathrm{y} / \mathrm{x}) \\
\text { so } \frac{d y}{d x}=\frac{x^{n} f_{1}(x, y)}{x^{n} f_{2}(x, y)}=f(y / x) \tag{1}
\end{gather*}
$$

Now put $\mathrm{y} / \mathrm{x}=v$ or $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
So from (1) $v+x \frac{d v}{d x}=f(v)$ $\qquad$
Separating the variables $\frac{d v}{f(v)-v}=\frac{d x}{x}$
Integrating this, we get required solution.
Problem: Solve the differential equation

$$
x^{2} d y+y(x+y) d x=0
$$

Solution : Given equation can be written as $\frac{d y}{d x}+\frac{y(x+y)}{x^{2}}=0$
This is a homogeneous differential equation.
Put $\mathrm{y}=v \mathrm{x}$.

$$
\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}
$$

Equation (1) becomes $v+x \frac{d v}{d x}+\frac{v x(x+v x)}{x^{2}}=0$

$$
\begin{aligned}
& \text { or } v+x \frac{d v}{d x}+v(1+v)=0 \\
& \text { or } \frac{d v}{v(v+2)}+\frac{d x}{x}=0 \\
& \text { or } \frac{1}{2}\left[\frac{1}{v}-\frac{1}{v+2}\right] d v+\frac{d x}{x}=0
\end{aligned}
$$

Integrating we get $\frac{1}{2}[\log v-\log (v+2)]+\log x=c$

$$
\begin{aligned}
& \text { or } \log x \sqrt{\frac{v}{v+2}}=c \\
& \text { or } \log x \sqrt{\frac{y / x}{y / x+2}}=c \\
& \text { or } x \sqrt{\frac{y / x}{y / x+c}}=e^{c}=k(\text { say }) \\
& \text { or } x^{2} y=k^{2}(y+2 x)
\end{aligned}
$$

## Non Homogeneous equation can be reduced to homogeneous form:

Equation of this type is $\frac{d y}{d x}=\frac{a x+b y+c}{A x+B y+C}$
Case-I when $\frac{a}{A} \neq \frac{b}{B}$ then put $x=X+h \quad \& \quad y=Y+k$

$$
\text { so } \frac{d y}{d x}=\frac{d Y}{d X}=\frac{a(X+h)+b(Y+k)+c}{A(X+h)+B(y+k)+C}=\frac{a X+b y+(a h+b k+c)}{A X+B Y+(A h+B k+C)}
$$

Choose h and k such that $a h+b k+c=0$

$$
\begin{equation*}
A h+B k+C=0 \tag{2}
\end{equation*}
$$

so equation (2) becomes $\frac{d Y}{d X}=\frac{a X+b y}{A X+B Y}$ which is a homogeneous equation.
and can be solved by putting $\mathrm{Y}=\mathrm{vX}$.
Problem : Solve the differential equation $(x+y+5) d y=(y-x+1) d x$
Solution : Given differential equation can be written as $\frac{d y}{d x}=\frac{y-x+1}{x+y+5}$

$$
\text { Put } x=X+h, y=Y+k
$$

The equation reduced to $\frac{d Y}{d X}=\frac{(Y-X)+(k-h+1)}{(X+Y)+(h+k+5)}$
Now choose h and k such that

$$
\begin{aligned}
& \mathrm{k}-\mathrm{h}+1=0 \\
& \mathrm{~h}+\mathrm{k}+5=0
\end{aligned}
$$

Solving these equations, we get

$$
\begin{equation*}
\mathrm{h}=-2, \mathrm{k}=-3 \tag{3}
\end{equation*}
$$

so equation (2) becomes $\frac{d Y}{d X}=\frac{Y-X}{X+Y}$
Now put $\mathrm{Y}=\mathrm{vX}$

$$
\Rightarrow \frac{d Y}{d X}=v+\frac{d v}{d X}
$$

so by (3) $v+x \frac{d v}{d X}=\frac{v X-X}{x+v X}$

$$
\text { or } x \frac{d v}{d X}=\frac{v-1}{v+1}-v
$$

$$
\text { or } x \frac{d v}{d X}=-\left(\frac{1+v^{2}}{1+v}\right)
$$

$$
\text { or }\left(\frac{1+v}{1+v^{2}}\right) d v=-\frac{d v}{X}
$$

Integrating $\int\left[\frac{1}{1+v^{2}}+\frac{2 v}{2\left(1+v^{2}\right)}\right] d v+\int \frac{d X}{X}=C$

$$
\begin{aligned}
& \text { or } \tan ^{-1} v+\frac{1}{2} \log \left(1+v^{2}\right)+\log X=C \\
& \text { or } \tan ^{-1} \frac{Y}{X}+\frac{1}{2} \log \left(\frac{Y^{2}+X^{2}}{X^{2}}\right)+\log X=C \\
& \text { or } \tan ^{-1} \frac{y+3}{x+2}+\frac{1}{2} \log \left[(y+3)^{2}+(x+2)^{2}\right]=C
\end{aligned}
$$

Case-II : When $\frac{a}{A}=\frac{b}{B}$
then let $\frac{a}{A}=\frac{b}{B}=\frac{1}{k} \Rightarrow A=a k$ and $B=b k$
so $\frac{d y}{d x}=\frac{a x+b y+C}{k(a x+b y)+C}$
Now put $a x+b y=v \Rightarrow a+b \frac{d y}{d x}=\frac{d v}{d x}$ or $\frac{d y}{d x}=\frac{\frac{d v}{d x}-a}{b}$
so $\frac{\frac{d v}{d x}-a}{b}=\frac{v+C}{k v+C}$ or $\frac{d v}{d x}=\frac{(b+a k) v+(b c+a c)}{k v+C}$
Example: Solve the differential equation $(4 x+6 y+5) d y=(3 y+2 x+4) d x$
Solution : Given Diff. equation can be written as $\frac{d y}{d x}=\frac{3 y+2 x+4}{4 x+6 y+5}$

$$
\begin{equation*}
\text { or } \frac{d y}{d x}=\frac{3 y+2 x+4}{2(2 x+3 y)+5} \tag{1}
\end{equation*}
$$

Put $2 x+3 y=v \Rightarrow 2+3 \frac{d y}{d x}=\frac{d v}{d x}$
So by (1) $\quad \frac{1}{3}\left(\frac{d v}{d x}-2\right)=\frac{v+4}{2 v+5}$

$$
\begin{aligned}
& \text { or } \frac{d v}{d x}=\frac{7 v+22}{2 v+5} \\
& \text { or }\left(\frac{2 v+5}{7 v+22}\right) d v=d x
\end{aligned}
$$

Integrating we get $\int\left[\frac{2}{7}-\frac{9}{7} \cdot \frac{1}{7 v+22}\right] d v=\int d x+c$

$$
\begin{aligned}
& \therefore \frac{2}{7} v-9 \log (7 v+22)=x+C \\
& \therefore \frac{2}{7}(2 x+3 y)-9 \log (14 x+21 y+22)=x+C
\end{aligned}
$$

Required solution of given differential equation.

## Differential Equation of nth order with constant coefficients:

Linear Differential Equation: If degree of dependent variable and its derivative is one then such differential equation is called linear differential equation.

For example $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=x^{3}$ is linear differential equation.
Non Linear: If degree of dependent variable and its derivative is more than 1 then such differential equation is called non-linear differential equation.

For example $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\frac{d y}{d x}+y=x^{2}$ is non-linear differential equation.
General form of a linear differential equation of $n$th order is

$$
\begin{equation*}
\frac{d^{n} y}{d x^{2}}+p_{1} \frac{d^{n-2} y}{d x^{n-2}}+\ldots \ldots \ldots+p_{n} y=X \tag{1}
\end{equation*}
$$

where $\mathrm{p}_{1}, \mathrm{p}_{2} \ldots . . . . . \mathrm{p}_{\mathrm{n}}$ are constants and X is any function of X . Operator $\frac{d}{d x}$ is denoted by D .

$$
\begin{equation*}
\therefore D^{n} y+p_{1} D^{n-1} y+\ldots \ldots \ldots . . . . .+p_{n} y=X \tag{2}
\end{equation*}
$$

$\qquad$
or $f(D) y=X$
where $f(D)=D^{n}+p_{1} D^{n-1}+\ldots \ldots \ldots . .+p_{n}$
Let us consider a differential equation $\frac{d y}{d x}+p y=Q$ of Ist order.
Its solution is $y e^{\int p d x}=\int Q e^{\int p d x} d x+C$

$$
\begin{aligned}
& \text { or } \Rightarrow y=C e^{-\int p d x}+e^{-\int p d x} \int Q e^{\int p d x} d x \\
& \Rightarrow y=C u+v \text { where } u=e^{-\int p d x} \& v=e^{-\int p d x} \int Q e^{\int p d x} d x
\end{aligned}
$$

(1) Now differentiating $u=e^{-\int p d x}$ w.r.t. x .

$$
\frac{d u}{d x}=-p e^{-\int p d x}=-p u \Rightarrow \frac{d u}{d x}+p u=0 \Rightarrow \frac{d}{d x} C u+p C u=0
$$

so $y=c u$ is the solution of $\frac{d}{d x}(C u)+p(C u)=0$.
(2) Differentiating $y=e^{-\int p d x} \int Q e^{\int p d x} d x$ with respect to x .

$$
\begin{aligned}
& \frac{d v}{d x}=-p e^{-\int p d x} \int Q e^{-\int p d x} d x+e^{-\int p d x} Q e^{-\int p d x} d x \\
& \Rightarrow \frac{d v}{d x}=-p v+Q \Rightarrow \frac{d v}{d x}+p v=Q
\end{aligned}
$$

so $\mathrm{y}=\mathrm{v}$ is the solution of $\frac{d v}{d x}+p v=Q$
so solution of (1) is (2) consisting of two partrs i.e. $u$ and $v, c u$ is known as complementary function and v as particular Integral.

So general solution $=$ complementary function + particular Integral.

## Method for finding Complementary function:

Let $y=e^{m x}$ then $D^{r} y=m^{r} e^{m x}$
so equation (2) becomes $\left(m^{n}+p_{1} m^{n-1}+p_{2} m^{n-2}+\ldots \ldots . .+p_{n}\right) e^{m x}=0$
or $y=e^{m x}$ is a solution of (1) if

$$
m^{n}+p_{1} m^{n-1}+p_{2} m^{n-2}+\ldots \ldots . .+p_{n}=0
$$

This equation is known as Auxiliary equation and $m_{1}, m_{2}, \ldots \ldots . m_{n}$ are roots of A.E.
There are three cases.
Case-I : Roots are real and different then solution is

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}+\ldots \ldots \ldots . .+C_{n} e^{m_{n} x}
$$

Case-II : Roots are real and some of them are equal say $m_{1}=m_{2}=m$ then solution is $y=\left(C_{1}+C_{2} x\right) e^{m x}+C_{3} e^{m_{3} x}+\ldots \ldots \ldots . .+C_{n} e^{m_{n} x}$

Case-III : Some of roots are imaginary say $m_{1}=\alpha+i \beta, \quad m_{2}=\alpha-i \beta$ then general solution of (1) is

$$
\begin{aligned}
& y=C_{1} e^{(\alpha+i \beta) x}+C_{2} e^{(\alpha-i \beta) x}+C_{3} e^{m_{3} x}+\ldots \ldots . .+C_{n} e^{m_{n} x} \\
&=e^{\alpha x}\left[C_{1}(\operatorname{Cos} \beta x+i \operatorname{Sin} \beta x)+C_{2}(\operatorname{Cos} \beta x-i \operatorname{Sin} \beta x)+\ldots \ldots\right] \\
&=e^{\alpha x}\left[\left(C_{1}+C_{2}\right) \operatorname{Cos} \beta x+i\left(C_{1}-C_{2}\right) \operatorname{Sin} \beta x\right]+\ldots \ldots \ldots . . . . . \\
&=e^{\alpha x}[A \operatorname{Cos} \beta x+B \operatorname{Sin} \beta x]+\ldots \ldots \ldots . . .
\end{aligned}
$$

Problem : Solve $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0$.
Solution : Given equation is $\left(D^{2}-8 D+15\right) y=0$ so $\mathrm{D}=3,5$.
Hence required solution is $y=e^{3 x}+C_{2} e^{5 x}$
Problem : $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$

$$
\left(D^{2}-6 D+9\right) y=0 \quad \text { A.E. is } D^{2}-6 D+9=0 \text { or }(D-3)^{2}=0 \quad \text { or } \mathrm{D}=3,3
$$

Hence required solution is $y=\left(C_{1}+C_{2} x\right) e^{3 x}$
Problem : Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0$
Solution : Here Auxiliary equation is $D^{2}+4 D+5=0$ and its roots are $-2 \pm i$
so required solution is $y=e^{-2 x}(A \operatorname{Cos} x+B \operatorname{Sin} x)$.
Method of finding particular Integral : Particular Integral of a differential equation $f(D) Y=X$ is $\frac{1}{f(D)} X$

Case-I. when $X=e^{a x}$ then P.I. $=\frac{1}{f(D)} e^{a x}=\frac{1}{f(a)} e^{a x}$ if $f(a) \neq 0$
If $f(a)=0$ then $\frac{1}{f(D)} e^{a x}=x \cdot \frac{1}{f^{\prime}(D)} e^{a x}$.
Case-II : when $X=x^{n}$ then P.I. $=\frac{1}{f(D)} x^{n}=[f(D)]^{-1} x^{n}$ expand $[f(D)]^{-1}$ and then operate.
Case-III : where $X=\operatorname{Sin} a X$ then
P.I. $=\frac{1}{f\left(D^{2}\right)} \operatorname{Sin} a x=\frac{1}{f\left(-a^{2}\right)} \operatorname{Sin} a x$ if $f\left(-a^{2}\right) \neq 0$
and $\frac{1}{f\left(D^{2}\right)} \operatorname{Cos} a x=\frac{1}{f\left(-a^{2}\right)} \cos a x$ if $f\left(-a^{2}\right) \neq 0$
If $f\left(-a^{2}\right)=0$ then $\frac{1}{f\left(D^{2}\right)} \operatorname{Sin} a x=x \cdot \frac{1}{f^{\prime}\left(-a^{2}\right)} \operatorname{Sin} a x$
Case-IV : when $X=e^{a x} \phi(x)$
Then P.I. $=\frac{1}{f(D)} e^{a x} . \phi(x)=e^{a x} \frac{1}{f(D+a)} \phi(x)$
Case-V : P.I. $=\frac{1}{D-a} \phi(x)=e^{+a x} \int e^{-a x} \phi(x) d x$

## Case-I.

Problem : (1) Solve the Diff. Equation $\left(D^{2}+6 D+9\right) y=5 e^{2 x}+e^{-3 x}$
Solution : A.E. is $D^{2}+6 D+9=0 \Rightarrow 0=-3,-3$

$$
\begin{aligned}
& \text { so C.F. }=\left(C_{1}+C_{2} x\right) 3 e^{-3 x} \\
& \text { and P.I. }=\frac{1}{D^{2}+6 D+9}\left(5 e^{2 x}+e^{-3 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =5 \frac{1}{D^{2}+6 D+9} e^{2 x}+\frac{1}{D^{2}+6 D+9} e^{-3 x} \\
& =5 \frac{1}{2^{2}+6 \cdot 2+9} e^{2 x}+x \frac{1}{2 D+6} e^{-3 x} \\
& \quad\left(\because D^{2}+6 D+9=0 \text { at } D=-3\right) \\
& =\frac{1}{5} e^{2 x}+x \cdot x \cdot \frac{1}{2} e^{-3 x} \\
& \quad(\because 2 D+6=0 \text { at } D=-3) \\
& =\frac{1}{5} e^{2 x}+\frac{x^{2}}{2} e^{-3 x}
\end{aligned}
$$

so general solution is $y=\left(C_{1}+C_{2} x\right) e^{-3 x}+\frac{1}{5} e^{2 x}+\frac{x^{2}}{2} e^{-3 x}$.

## Case-II.

Problem : Find P.I. to the differential Equation $\left(D^{2}+4\right) y=x$.
Solution : P.I. $=\frac{1}{D^{2}+4} x=\frac{1}{4}\left(1+\frac{D^{2}}{4}\right)^{-1} x=\frac{1}{4}\left(1-\frac{D^{2}}{4}+\ldots ..\right) x=\frac{x}{4}$

$$
\begin{aligned}
& =\frac{1}{2 D}\left(1-\frac{3}{2} D+\frac{7}{4} D^{2}+\ldots \ldots . . .\right) x^{2} \\
& =\frac{1}{2 D}\left(x^{2}-\frac{3}{2} \cdot 2 x+\frac{7}{4} \cdot 2\right) \\
& =\frac{1}{2}\left(\frac{x^{3}}{3}-3 \frac{x^{2}}{2}+\frac{7}{2} x\right)
\end{aligned}
$$

## Case-III :

Problem : Solve the differential Equation $\left(D^{2}-3 D+2\right) y=6 e^{3 x}+\operatorname{Sin} 2 x$
Solution : A.E. is $m^{2}-3 m+2=0 \Rightarrow m=1, m=2$

$$
\begin{aligned}
& \text { so C.F. }=C_{1} e^{x}+C_{2} e^{2 x} \\
& \text { P.I. }=\frac{1}{D^{2}-3 D+2}\left(6 e^{3 x}+\operatorname{Sin} 2 x\right) \\
& \\
& =6 \frac{1}{D^{2}-3 D+2} e^{3 x}+\frac{1}{D^{2}-3 D+2} \operatorname{Sin} 2 x \\
& \\
& =6 \cdot \frac{1}{2} e^{3 x}+\frac{1}{-2^{2}-3 D+2} \operatorname{Sin} 2 x \\
& \\
& =3 e^{3 x}-\frac{1}{3 D+2} \operatorname{Sin} 2 x
\end{aligned}
$$

$$
\begin{aligned}
& =3 e^{3 x}-\frac{3 D-2}{9 D^{2}-4} \operatorname{Sin} 2 x \\
& =3 e^{3 x}-\frac{3 D-2}{-40} \operatorname{Sin} 2 x=3 e^{3 x}+\frac{1}{40}\left(3 \frac{d}{d x}-2\right) \operatorname{Sin} 2 x \\
& =3 e^{3 x}+\frac{1}{40}(3 \operatorname{Cos} 2 x \cdot 2-2 \operatorname{Sin} 2 x) \\
& =3 e^{3 x}+\frac{1}{20}(3 \operatorname{Cos} 2 x-\operatorname{Sin} 2 x)
\end{aligned}
$$

Hence general solution is $y=C_{1} e^{x}+C_{2} e^{2 x}+3 e^{3 x}+\frac{1}{20}(3 \operatorname{Cos} 2 x-\operatorname{Sin} 2 x)$

## Case-IV :

Problem : Solve the differential Equation $\left(D^{2}-4 D+1\right) y=e^{2 x} \operatorname{Sin} 2 x$
Solution : A.E. is $m^{2}-4 m+1=0 \Rightarrow m=2 \pm \sqrt{3}$
so C.F. $=C_{1} e^{(2+\sqrt{3}) x}+C_{2} e^{(2-\sqrt{3}) x}$

$$
\begin{aligned}
& =\left(C_{1} e^{\sqrt{3} x}+C_{2} e^{-\sqrt{3} x}\right) e^{2 x} \\
& =\left(C_{1} \operatorname{Cosh} \sqrt{3} x+C_{2} \operatorname{Sinh} \sqrt{3} x\right) e^{2 x}
\end{aligned}
$$

P.I. $=\frac{1}{D^{2}-4 D+1} e^{2 x} \operatorname{Sin} 2 x=e^{2 x} \frac{1}{(D+2)^{2}-4(D+2)+1} \operatorname{Sin} 2 x$

$$
\begin{aligned}
& =e^{2 x} \frac{1}{D^{2}-3} \operatorname{Sin} 2 x \\
& =e^{2 x} \frac{1}{-4-3} \operatorname{Sin} 2 x \\
& =-\frac{1}{7} e^{2 x} \operatorname{Sin} 2 x \\
\text { G.S. }= & \left(C_{1} \operatorname{Cosh} \sqrt{3} x+C_{2} \operatorname{Sinh} \sqrt{3} x\right) e^{2 x}-\frac{1}{7} e^{2 x} \operatorname{Sin} 2 x
\end{aligned}
$$

## Case-V :

Problem : Solve the differential Equation $\left(D^{2}-3 D+2\right) y=e^{5 x}$
Solution : $\left(D^{2}-3 D+2\right) y=e^{5 x}$

$$
\begin{aligned}
& \text { or }(D-1)(D-2) y=e^{5 x} \\
& \text { C.F. } y=C_{1} e^{x}+C_{2} e^{2 x}
\end{aligned}
$$

P.I. $\frac{1}{(D-1)(D-2)} e^{5 x}=\left[\frac{1}{(D-2)}-\frac{1}{(D-1)}\right] e^{5 x}$

$$
\begin{aligned}
& =\frac{1}{(D-2)} e^{5 x}-\frac{1}{(D-1)} e^{5 x} \\
& =e^{2 x} \int e^{5 x} \cdot e^{-2 x} d x-e^{2 x} \int e^{5 x} \cdot e^{-x} d x \\
& =e^{2 x}\left(\frac{e^{3 x}}{3}\right)-e^{x}\left(\frac{e^{4 x}}{4}\right) \\
& =\frac{e^{5 x}}{3}-\frac{e^{5 x}}{3}=\frac{e^{5 x}}{12}
\end{aligned}
$$

Hence general solution is $y=C_{1} e^{x}+C_{2} e^{2 x}+\frac{1}{12} e^{5 x}$.

## Homogeneous Linear Differential Equation with Variable Coefficient (Cauchy-

## Euler Equation):

A Linear differential equation of type

$$
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots . . . .+a_{0} y=\phi(x)=Q
$$

where $\mathrm{a}_{0}, \mathrm{a}_{1}$, $\qquad$ $\mathrm{a}_{\mathrm{n}}$ are constants is called a homogeneous linear differential equation with variable coefficient.

To solve this equation put $x=e^{z}, z=\log e^{x} \frac{d}{d z}=D$

$$
\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}=\frac{1}{x} \frac{d y}{d z} \text { or } x \frac{d y}{d x}=\frac{d y}{d z} \text { or } x \frac{d y}{d x}=D y
$$

again $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{x} \frac{d y}{d z}\right)=\frac{1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d^{2} y}{d z^{2}} \cdot \frac{d z}{d x}$

$$
\begin{aligned}
& =\frac{1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d^{2} y}{d z^{2}} \cdot \frac{1}{x} \\
& =\frac{1}{x^{2}}\left(\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}\right)=\frac{1}{x^{2}}\left(D^{2}-D\right) y
\end{aligned}
$$

$$
x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y
$$

Similarly

$$
x^{3} \frac{d^{2} y}{d x^{3}}=D(D-1)(D-2) y
$$

Substitution of these values in (1) reduces the given homogeneous equation to a linear differential equation of $\mathrm{n}^{\text {th }}$ order with constant coefficients.

## Working Rule:

Step 1: Write the given equation in D-notation form.
Step II: Replace $x D, x^{2} D^{2}, x^{3} D^{3}$ $\qquad$ etc. in the equation by
$x D=D^{\prime}, x^{2} D^{2}=D^{\prime}\left(D^{\prime}-1\right), x^{3} D^{3}=D^{\prime}\left(D^{\prime}-1\right)\left(D^{\prime}-2\right)$ and so on.
Step III: Obtain equations is linear differential equation with constant coefficients, find C.F. and P.I. treating $z$ as independent variable.

Step IV: Lastly put back $z=\log x$ to get the required result.
Problem: Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=2 \log x$.
Solution: D-notation form of the given equation is

$$
\left(x^{2} D^{2}-x D+1\right) y=2 \log x
$$

On putting $x=e^{z}$ and $x D=D^{\prime}, x^{2} D^{2}=D^{\prime}\left(D^{\prime}-1\right)$, we have

$$
\begin{aligned}
& {\left[D^{\prime}\left(D^{\prime}-1\right)-D^{\prime}+1\right] y=2 z \quad\left(a s \log e^{z}=z\right)} \\
& \left(D^{\prime}-1\right)^{2} y=2 z
\end{aligned}
$$

Here A.E. is $(m-1)^{2}=0$ gives $m=1,1$. so $C . F$ is $y=\left(c_{1}+c_{2} z\right) e^{z}$

$$
\begin{aligned}
\text { Now P.I }=\frac{1}{f\left(D^{\prime}\right)} X=\frac{1}{\left(D^{\prime}-1\right)^{2}} 2 z & =\left[\left(D^{\prime}-1\right)^{-2}\right] 2 z \\
& =\left[1+2 D^{\prime}+\ldots . . . . . . . . . . . . .\right] 2 z=2 z+4
\end{aligned}
$$

Hence the general solution is C.F +P.I. i.e., $y=\left(c_{1}+c_{2} z\right) e^{z}+2 z+4$.

$$
y=\left(c_{1}+c_{2} \log x\right) x+2 \log x+4 \quad(\text { putting } z=\log x) \text { Ans. }
$$

Problem: solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$.
Solution: D-notation form of the given equation is

$$
\left(x^{2} D^{2}-3 x D+4\right) y=2 x^{2}
$$

On putting $x=e^{z}$ and $x D=D^{\prime}, x^{2} D^{2}=D^{\prime}\left(D^{\prime}-1\right)$ we have

$$
\begin{aligned}
& {\left[D^{\prime}\left(D^{\prime}-1\right)-3 D^{\prime}+4\right] y=2 e^{2 z} \quad\left(\text { as } x^{2}=\left(e^{z}\right)^{2} e^{2 z}\right)} \\
& \left(D^{\prime 2}-4 D^{\prime}+4\right) y=2 e^{2 z}
\end{aligned}
$$

Here A.E is $(m-2)^{2}=0$ gives $\mathrm{m}=2,2$, so C.F is $y=\left(c_{1}+c_{2} z\right) e^{2 z}$
Now P.I $=\frac{1}{f\left(D^{\prime}\right)} X=\frac{1}{\left(D^{\prime}-1\right)^{2}} 2 e^{2 z}=\frac{1}{\left(D^{\prime}-2\right)^{2}} 2 e^{2 z} .1$

$$
=2 \frac{1}{\left(D^{\prime}-2\right)^{2}} e^{2 z} \cdot 1
$$

(here $X$ is of form $e^{a x} . V, V=1$, art.1.2)

$$
\begin{aligned}
\therefore \text { P.I }=2 e^{2 z} \frac{1}{\left\{\left(D^{\prime}+2\right)-2\right\}^{2}} & 1=2 e^{2 z} \frac{1}{D^{2^{2}}} \cdot 1 \quad\left(\text { here } \frac{1}{D^{2^{2}}} 1=\iint 1 d z d z\right) \\
& =2 e^{2 z} \frac{1}{D^{\prime}} z=2 e^{2 z} \frac{1}{2} z^{2} \\
& =e^{2 z} z^{2}
\end{aligned}
$$

Hence the general solution is i.e., $y=\left(c_{1}+c_{2} z\right) e^{2 z}+e^{2 z} z^{2}$

$$
\begin{aligned}
y & =\left(c_{1}+c_{2} \log x\right) x^{2}+e^{2 \log x}(\log x)^{2} . \quad(\text { putting } z=\log x) \\
y & =\left(c_{1}+c_{2} \log x\right) x^{2}+x^{2}(\log x)^{2} .
\end{aligned}
$$

Problem: Solve $x^{3} \frac{d^{3} y}{d x^{3}}-2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$.
Solution: D-notation form of the given equation is

$$
\left(x^{3} D^{3}+2 x^{2} D^{2}+2\right) y=10\left(x+\frac{1}{x}\right)
$$

On putting $x=e^{2}$ and $x D=D^{\prime}, x^{2} D^{2}=D^{\prime}\left(D^{\prime}-1\right) \cdot X^{3} D^{\prime}=D^{\prime}\left(D^{\prime}-1\right)\left(D^{\prime}-2\right)$
We have $\left[D^{\prime}\left(D^{\prime}-1\right)\left(D^{\prime}-2\right)+2 D^{\prime}\left(D^{\prime}-1\right)+2\right] y=10\left(e^{z}+e^{-z}\right)$.

$$
\Rightarrow\left(D^{13}+D^{12}+2\right) y=10\left(e^{z}+e^{-z}\right)
$$

Here A.E is $m^{3}-m^{2}+2=0 \Rightarrow(m+1)\left(m^{2}-2 m+2\right)=0$
$\Rightarrow m=-1$ and $m=\frac{2 \pm \sqrt{4-8}}{2}$ or $m=-1$ and $m=1 \pm i$

Hence , $C . F=c_{1} e^{-z}+e^{z}\left(c_{2} \cos z+c_{3} \sin z\right)$.

$$
\begin{aligned}
\text { Now P.I }= & =\frac{1}{f\left(D^{\prime}\right)} X=\frac{1}{\left(D^{13}-D^{12}+2\right)^{2}} 10\left(e^{z}+e^{-z}\right) \\
& =10 \frac{1}{\left(D^{13}-D^{12}+2\right)^{2}} e^{z}+10 \frac{1}{\left(D^{13}-D^{12}+2\right)^{2}} e^{-z}
\end{aligned}
$$

$\therefore$ first part of $\mathrm{P} . \mathrm{I}==10 \frac{1}{\left(1^{3}-1^{2}+2\right)} e^{z}=5 e^{z} \quad$ [on putting $\mathrm{D}^{\prime}=1$ ] $\qquad$

Now second part of P.I $=10 \frac{1}{\left(D^{3}-D^{12}+2\right)^{2}} e^{-z}$

$$
=10 \frac{1}{\left(D^{\prime}-1\right)\left(D^{\prime 2}-2 D^{\prime}+2\right)} e^{-z}
$$

On putting $D^{\prime}=1$ except $\left(D^{\prime}+1\right)$ because it becomes zero, a failure case of $f(a)=0$
Which can be solved by the formula $\frac{1}{(D-\alpha)} X=e^{\alpha x} \int e^{-\alpha x} X d x$

$$
\begin{align*}
& =10 \frac{1}{\left(D^{\prime}+1\right)\left((-1)^{2}-2(-1)+2\right)} e^{-z} \\
& =\frac{10}{5\left(D^{\prime}+1\right)} e^{-z}=2 \frac{1}{\left(D^{\prime}+1\right)} e^{-z}=2 e^{-z} \int e^{z} e^{-z} d z \\
& =2 z e^{-z} \tag{ii}
\end{align*}
$$

$\therefore$ from (i) and (ii)

$$
\text { P.I }=5 \mathrm{e}^{2}+2+\mathrm{z} e^{-z}
$$

Hence the general solution is $\mathrm{y}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I} .=c_{1} e^{-z}+e^{z}\left(c_{2} \cos z+c_{3} \sin z\right)+5 \mathrm{e}^{z}+2+\mathrm{z} e^{-z}$
Problem: Solve the differential equation $\left(x^{2} D^{2}+x D+4\right) y=0$.

## Solution:

Substituting $x=e^{z} \Rightarrow \operatorname{In} x=z \Rightarrow x D=D_{1}, x^{2} D^{2}=D_{1}\left(D_{1}-1\right)$, the given equation reduces to

$$
\left[D_{1}\left(D_{1}-1\right)+D_{1}-4\right] y=0 \Rightarrow\left(D_{1}^{2}-4\right) y=0
$$

The root of the corresponding characteristic equation are $m=2,-2$. The required solution of the transformed equation is

$$
y=c_{1} e^{2 z}+c_{2} e^{-2 z}
$$

Putting $\log x=z$, we have the desired solution as

$$
y=c_{1} x^{2}+c_{2} x^{-2}
$$

Here $c_{1}$ and $c_{2}$ are arbitrary constants.
Problem: Find the general solution of the differential equation $\left(x^{2} D^{2}+1\right) y=3 x^{2}$.
Solution: substituting $x=e^{z}$, the given equation reduces to

$$
\left(D_{1}\left(D_{1}-1\right)+1\right) y=3 e^{2 z} \Rightarrow\left(D_{1}^{2}-D_{1}+1\right) y=3 e^{2 z}
$$

The characteristic equation of this differential equation is

$$
\left(m^{2}-m+1\right)=0 \Rightarrow m=(1 \pm i \sqrt{3}) / 2
$$

The complimentary function is

$$
\mathrm{C} . \mathrm{F}=e^{\frac{z}{2}}\left[c_{1} \cos \left(z \sqrt{\frac{3}{2}}\right)+\left(c_{1} \sin z \sqrt{\frac{3}{2}}\right)\right]
$$

Substituting z = Inx, we get

$$
\text { C.F }=\sqrt{x}\left[c_{1} \cos \left(\operatorname{In} x \sqrt{\frac{3}{2}}\right)+c_{1} \sin \left(\operatorname{In} x \sqrt{\frac{3}{2}}\right)\right]
$$

The particular integral of the transformed equation is

$$
\text { P.I }=\frac{1}{D_{1}^{2}-D_{1}+1} 3 e^{2 z}=\frac{1}{2^{2}-2+1} 3 e^{2 z}=e^{2 z}
$$

Hence the desired solution of the given differential equation is

$$
y=\sqrt{x}\left[c_{1} \cos \left(\operatorname{In} x \sqrt{\frac{3}{2}}\right)+c_{1} \sin \left(\operatorname{In} x \sqrt{\frac{3}{2}}\right)\right]+x^{2}
$$

## Legendre 's Linear Differential Equation

The differential equation of the form

$$
K_{0}(a x+b)^{n} \frac{d^{m} y}{d x^{n}}+K_{1}(a x+b)^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots \ldots+K_{n-1}(a x+b) \frac{d y}{d x}+K_{n} y=X
$$

Where $K_{0} K_{1} \ldots \ldots \ldots \ldots ., K_{n}$ are constant and X is a function of x only, known as Legendre' equation. Such equation can be reduced to linear differential equation with constant coefficients by putting
$(a x+b)=e^{t}$ or $t=\log (a x+b)$ sothat $\frac{d t}{d x}=\frac{a}{a x+b}$.

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{d y}{d t} \frac{a}{a x+b} \text { or }(a x+b) \frac{d y}{d x}=(a x+b) \frac{d y}{d t}=a \frac{d y}{d t}=a D y, i f \frac{d}{d t}=D
$$

Again $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \frac{d y}{d x}=\frac{d}{d x}\left(\frac{a}{a x+b} \frac{d y}{d t}\right)=-\frac{a^{2}}{(a x+b)} \frac{d y}{d t}+\frac{a}{a x+b} \frac{d}{d t} \frac{d t}{d x}\left(\frac{d y}{d t}\right)$

$$
=-\frac{a^{2}}{(a x+b)^{2}} \frac{d y}{d t}+\frac{a^{2}}{(a x+b)^{2}} \frac{d^{2} y}{d t^{2}}
$$

Or $\quad(a x+b)^{2} \frac{d^{2} y}{d x^{2}}=a^{2}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)=a^{2} D(D-1) y$ and so on
By substituting all these values in (2), we obtain linear equation with constant coefficients.
Problem: Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos (\log (1+x))$
Solution: As the given equation is Legendre's linear equation. Here we take $(1+\mathrm{x})=$ et

$$
(1+x) \frac{d}{d x} y=D y
$$

$(1+x)^{2} \frac{d^{2}}{d x^{2}} y=D(D-1) y$
$(1+x)^{2} \frac{d^{3}}{d x^{3}} y=(D)(D-1)(D-2) y, \ldots \ldots .$. so on
, where $D=\frac{d}{d t}$
The given equation reduces to
$D(D-1) y+D y+y=4 \cos t \Rightarrow\left(D^{2}+1\right) y=4 \cos t, t=\log (1+x)$
A.E $\quad\left(D^{2}+1\right)=0 \quad \Rightarrow D= \pm i$
$\therefore \quad \mathrm{C} . \mathrm{F}=\left(c_{1} \cos t+c_{2} \sin t\right)$,
P.I $=\frac{1}{D^{2}+1} 4 \cos t=4 t \frac{1}{2 D} \cos t=2 t \frac{D}{D^{2}} \cos t=2 t \frac{D}{-1} \cos t=2 t \sin t$

Complete solution, $y=\left(c_{1} \cos t+c_{2} \sin t\right)+2 t \sin t, t=\log (1+x)$.
Problem: solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$
Solution: Take $2 x+3=e^{t}, t=\log (2 x+3)$ so that the given equation reduced to

$$
[4 D(D-1)-2 D-12] y=3\left(e^{t}-3\right) \text { as } 6 x=3(2 x)=3\left(e^{t}-3\right)
$$

Or $\quad 2\left(2 D^{2}-3 D-6\right) y=3\left(e^{t}-3\right)$
A.E $2 D^{2}-3 D-6=0$ or $\mathrm{D}=\frac{3 \pm \sqrt{57}}{4}=m_{1}, m_{2}$
$y_{\mathrm{cf}}(t)=c_{1} e^{m_{1} t}+c_{2} e^{m_{2} t}=c_{1}\left(e^{t}\right)^{m_{1}}+c_{2}\left(e^{t}\right)^{m_{2}}=c_{1}\left(e^{t}\right)^{\frac{3 \pm \sqrt{57}}{4}}+c_{2}\left(e^{t}\right)^{\frac{3 \pm \sqrt{57}}{4}}$
$P . I=\frac{1}{4 D^{2}-6 D-12} 3\left(e^{t}-3\right)$ $=3 \frac{1}{4 D^{2}-6 D-12} e^{t}-9 \frac{1}{4 D^{2}-6 D-12} e^{0 t}=-\frac{3}{14} e^{t}+\frac{3}{4}$

When $y(x)=y_{c f}(x)+y_{P I}(x)=c_{1}(2 x+3)^{m_{1}}+c_{2}(2 x+3)^{m_{2}}-\frac{3}{14}(2 x+3)+\frac{3}{4}$

## Solution of Second order differential equation:

## Equation whose one solution is known:

If $\mathrm{y}=\mathrm{u}$ is given solution belonging to the complementary of the differential equation. Let other solution be $y=v$. Then $y=u v$ is complete solution of the differential equation.

Let $\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+Q y=R \ldots \ldots . . . . . . . .$. (1) be given differential equation and u is the solution included in the complementary function of (1).

$$
\begin{equation*}
\text { So } \frac{d^{2} u}{d x^{2}}+p \frac{d u}{d x}+Q y=0 \tag{2}
\end{equation*}
$$

Now $y=u v$.

$$
\text { So } \frac{d y}{d x}=v \cdot \frac{d u}{d x}+u \cdot \frac{d v}{d x} \text { and } \frac{d^{2} y}{d x^{2}}=v \frac{d^{2} u}{d x^{2}}+2 \frac{d v}{d x} \frac{d u}{d x}+u \frac{d^{2} v}{d x^{2}}
$$

Substituting the values of in (1), we get

$$
v \frac{d^{2} u}{d x^{2}}+2 \frac{d v}{d x} \frac{d u}{d x}+u \frac{d^{2} v}{d x^{2}}+p\left(v \frac{d u}{d x}+u \frac{d v}{d x}\right)+Q u \cdot v .=R
$$

Arranging (Collecting the coefficients of $u$ and $v$ )

$$
\Rightarrow v\left(\frac{d^{2} u}{d x^{2}}+p \frac{d u}{d x}+Q u\right)+u\left(\frac{d^{2} v}{d x^{2}}+p \frac{d v}{d x}\right)+2 \frac{d u}{d x} \frac{d v}{d x}=R
$$

The Ist Bracket is zero by virtue of relation (2) and the remaining is divided by $u$. $\frac{d^{2} v}{d x^{2}}+\left[p+\frac{2}{u} \frac{d u}{d x}\right] \frac{d v}{d x}=\frac{R}{u}$

Let $\frac{d v}{d x}=z$ so that $\frac{d^{2} u}{d x^{2}}=\frac{d z}{d x}$
So equation (3) becomes $\frac{d z}{d x}+\left[p+\frac{2}{u} \frac{d u}{d x}\right] z=\frac{R}{u}$
This is a linear differential equation which can be solved ( z can be found) which contains one constant on integration.

$$
z=\frac{d v}{d x}, \text { we can get } \mathrm{v} . \text { So the solution is } \mathrm{y}=\mathrm{uv} \text {. }
$$

## Rules to find out the integral belonging to the complementary function.

Criteria

## Part of C.F.

1. $1+P+Q=0$

$$
e^{x}
$$

2. $1-P+Q=0 \quad e^{-x}$
3. $1+\frac{P}{a}+\frac{Q}{a^{2}}=0 \quad e^{a x}$
4. $P+Q x=0 \quad x$
5. $2+P x+Q x^{2}=0 \quad x^{2}$
6. $n(n-1)+P n x+Q x^{2}=0 \quad x^{n}$

Problem : Solve $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0$ given that $y=e^{x^{2}}$ is an integral included in the complementary function.

Solution : $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0$ $\qquad$
On putting $y=v e^{x^{2}}$, the reduced equation is

$$
\begin{aligned}
& \frac{d^{2} v}{d x^{2}}+\left[p+\frac{2}{u} \frac{d u}{d x}\right] \frac{d v}{d x}=0 \\
\Rightarrow & \frac{d^{2} v}{d x^{2}}+\left[-4 x+\frac{2}{e^{x^{2}}}\left(2 x e^{x^{2}}\right)\right] \frac{d v}{d x}=0 \\
\Rightarrow & \frac{d^{2} v}{d x^{2}}+[-4 x+4 x] \frac{d v}{d x}=0 \Rightarrow \frac{d^{2} v}{d x^{2}}=0 \Rightarrow \frac{d v}{d x}=c \Rightarrow v=C_{1} x+C_{2}
\end{aligned}
$$

so complete solution is $\therefore y=u v=e^{x^{2}}\left(C_{1} x+C_{2}\right)$
Problem : Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^{3}$
Solution : $x^{2} \frac{d^{2} y}{d x^{2}}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^{3}$.

$$
\Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{2 x(1+x)}{x^{2}} \frac{d y}{d x}+\frac{2(1+x)}{x^{2}} y=x
$$

here $P+Q x=\frac{-2 x(1+x)}{x^{2}}+\frac{2(1+x)}{x^{2}} x=0$
Hence $y=x$ is a solution of the complementary function and let other solution is v .
Putting $y=v x$ in (1), we get reduced equation

$$
\begin{aligned}
& \frac{d^{2} v}{d x^{2}}+\left\{P+\frac{2}{u} \frac{d u}{d x}\right\} \frac{d v}{d x}=\frac{x}{u} \\
& \frac{d^{2} v}{d x^{2}}+\left[\frac{-2 x(1+x)}{x^{2}}+\frac{2}{x} .(1)\right] \frac{d v}{d x}=\frac{x}{x} \\
& \Rightarrow \frac{d^{2} v}{d x^{2}}-2 \frac{d v}{d x}=1 \Rightarrow \frac{d z}{d x}-2 z=1 \text { as } \frac{d v}{d x}=z
\end{aligned}
$$

which is a linear differential equation of Ist order
and I.F. $=e^{\int-2 d x}=e^{-2 x}$
and its solution is $z e^{-2 x}=\int e^{-2 x} d x+C_{1}$

$$
\begin{aligned}
& z e^{-2 x}=\frac{e^{-2 x}}{-2}+C_{1} \text { or } z=-\frac{1}{2}+C_{1} e^{2 x} \\
& \Rightarrow \frac{d v}{d x}=-\frac{1}{2}+C_{1} e^{2 x}
\end{aligned}
$$

or $d v=\left(-\frac{1}{2}+C_{1} e^{2 x}\right) d x \Rightarrow v=-\frac{x}{2}+\frac{C_{1}}{2} e^{2 x}+C_{2}$

$$
\text { so } y=u v=x\left(-\frac{x}{2}+\frac{C_{1}}{2} e^{2 x}+C_{2}\right)
$$

Problem : Solve $(x+2) \frac{d^{2} y}{d x^{2}}-(2 x+5) \frac{d y}{d x}+2 y=(x+1) e^{x}$
Solution : $\frac{d^{2} y}{d x^{2}}-\frac{(2 x+5)}{(x+2)} \frac{d y}{d x}+\frac{2 y}{(x+2)}=\frac{(x+1) e^{x}}{(x+2)}$

Here $1+\frac{p}{a}+\frac{Q}{a^{2}}=0$ choosing $\mathrm{a}=2$

$$
1-\frac{2 x+5}{2 x+4}+\frac{2}{4 x+8}=0
$$

Hence $y=e^{2 x}$ is a part of C.F.
Putting $y=e^{2 x} v$ in (1), the reduced equation is

$$
\begin{aligned}
& \frac{d^{2} v}{d x^{2}}+\left[P+\frac{2}{u} \frac{d u}{d x}\right] \frac{d v}{d x}=\frac{(x+1) e^{x}}{e^{2 x}(x+2)} \\
\Rightarrow & \frac{d^{2} v}{d x^{2}}+\left[-\frac{2 x+5}{x+2}+\frac{2}{e^{2 x}} \cdot 2 e^{2 x}\right] \frac{d v}{d x}=\frac{(x+1) e^{x}}{e^{2 x}(x+2)} \\
\Rightarrow & \frac{d^{2} v}{d x^{2}}+\left[-\frac{2 x+5}{x+2}+4\right] \frac{d v}{d x}=\frac{(x+1) e^{-x}}{(x+2)} \\
\Rightarrow & \frac{d^{2} v}{d x^{2}}+\frac{2 x+3}{x+2} \frac{d v}{d x}=\frac{(x+1) e^{-x}}{(x+2)} \\
\Rightarrow & \frac{d z}{d x}+\frac{2 x+3}{x+2} z=\frac{(x+1) e^{-x}}{(x+2)}\left(\frac{d v}{d x}=z\right)
\end{aligned}
$$

which is a linear differential equation with

$$
\text { I.F. }=e^{\int \frac{2 x+3}{x+2} d x}=e^{\int\left(2-\frac{1}{x+2}\right) d x}=e^{2 x-\log (x+2)}=\frac{e^{2 x}}{(x+2)}
$$

Its Solution is $z \cdot \frac{e^{2 x}}{(x+2)}=\int \frac{e^{2 x}}{x+2} \frac{x+1}{(x+2)} e^{-x} d x+c$

$$
\begin{aligned}
& \quad=\int \frac{e^{x}(x+1)}{(x+2)^{2}} d x+c=\int e^{x}\left(\frac{1}{(x+2)}-\frac{1}{(x+2)^{2}}\right) d x+c \\
& \Rightarrow z=e^{-x}+C(x+2) e^{-2 x} \\
& \Rightarrow \frac{d v}{d x}=e^{-x}+C(x+2) e^{-2 x} \\
& \Rightarrow v=\int e^{-x} d x+C \int(x+2) e^{-2 x} d x+C_{1} \\
& \text { so } y=u v \\
& =e^{2 x}\left[-e^{-x}+\frac{C e^{-2 x}}{4}(2 x+5)+C_{1}\right]
\end{aligned}
$$

## Normal form (Removal of First derivative)

Consider the differential equation $\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+Q y=R$.

Let $\mathrm{y}=\mathrm{uv}$ be the complete solution of equation (1).

$$
\begin{align*}
& \text { so } \frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x} \ldots \ldots . . . . . . .  \tag{1}\\
& \frac{d^{2} y}{d x^{2}}=u \frac{d^{2} v}{d x^{2}}+2 \frac{d u}{d x} \frac{d v}{d x}+v \frac{d^{2} u}{d x^{2}}
\end{align*}
$$

putting the values of $y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ in (1) we get

$$
\begin{aligned}
& \left(u \frac{d^{2} v}{d x^{2}}+2 \frac{d u}{d x} \frac{d v}{d x}+v \frac{d^{2} u}{d x^{2}}\right)+p\left(u \frac{d v}{d x}+v \frac{d u}{d x}\right)+Q u v=R \\
& v \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}\left(p v+2 \frac{d v}{d x}\right)+u\left(\frac{d^{2} u}{d x^{2}}+p \frac{d v}{d x}+Q v\right)=R \\
& \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}\left(p+\frac{2}{v} \frac{d v}{d x}\right)+\frac{u}{v}\left(\frac{d^{2} u}{d x^{2}}+p \frac{d v}{d x}+Q v\right)=\frac{R}{v}
\end{aligned}
$$

Last bracket is not zero as $\mathrm{y}=\mathrm{v}$ is not part of complementary function.
Now removing the Ist derivative $P+\frac{2}{v} \frac{d v}{d x}=0$ or $\frac{d v}{v}=-\frac{1}{2} P d x$

$$
\text { or } \log v=-\frac{1}{2} \int P d x \Rightarrow v=e^{-\frac{1}{2} \int P d x}
$$

Now our objective is to find the value of last bracket

$$
\begin{aligned}
& \text { i.e. } \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+Q y=R \\
& \text { Now } \frac{d v}{d x}=-\frac{1}{z} e^{-\frac{1}{2} \int p d x}=-\frac{1}{2} p v \text { as } v=e^{-\frac{1}{2} \int p d x} \\
& \frac{d^{2} v}{d x^{2}}=-\frac{1}{2} \frac{d p}{d x} v-\frac{p}{2} \frac{d v}{d x}=-\frac{1}{2} \frac{d p}{d x} v-\frac{p}{2}\left(-\frac{1}{2} p v\right) \\
& =-\frac{1}{2} \frac{d p}{d x} v+\frac{1}{u} p^{2} v \\
& \therefore \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+Q v=-\frac{1}{2} \frac{d p}{d x} v+\frac{1}{4} p^{2} v+p\left(-\frac{1}{2} p v\right)+Q \\
& =v\left(Q-\frac{1}{2} \frac{d p}{d x}-\frac{1}{4} p^{2}\right)
\end{aligned}
$$

so equation (1) is transformed as

$$
\frac{d^{2} u}{d x^{2}}+\frac{u}{v} v\left(Q-\frac{1}{2} \frac{d p}{d x}-\frac{1}{4} p^{2}\right)=\frac{R}{v}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} u}{d x^{2}}+u\left(Q-\frac{1}{2} \frac{d p}{d x}-\frac{1}{4} p^{2}\right)=\operatorname{Re}^{\frac{1}{2} \int p d x} \\
& \text { or } \frac{d^{2} u}{d x^{2}}+Q_{1} u=R_{1} \text { where } Q_{1}=Q-\frac{1}{2} \frac{d p}{d x}-\frac{p^{2}}{4} \\
& R_{1}=\operatorname{Re}^{\frac{1}{2} \int \phi d x}
\end{aligned}
$$

so $y=u v \& v=\mathrm{e}^{-\frac{1}{2} \int p d x}$.
Working Rule to solve linear second order differential equations by reducing to its normal form: $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$, coefficient of $\frac{d^{2} y}{d x^{2}}$ is unity.

Step 2: Find $\mathrm{v}=e^{-\frac{1}{2} \int P d x}, Q_{1}=\left(Q-\frac{1}{4} P^{2}-\frac{1}{2} \frac{d P}{d x}\right)$ and $R_{1}=R \cdot e^{\frac{1}{2} \int P d x}=\frac{R}{v}$.
Step 3: Put the values of $Q_{1}$ and $R_{1}$ in normal form $\frac{d^{2} u}{d x^{2}}+Q_{1} u=R_{1}$.
Step 4: Obtained equation is linear differential equation with constant coefficient and solve by finding C.F and P.I

Step 5: Required solution is obtain by putting the value of $v$ and $u$ in $y=u v$.
Problem Solve $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+4 x^{2} y=e^{x^{2}}$
Solution: Here $\mathrm{P}=-4 x, \mathrm{Q}=4 x^{2}, \mathrm{R}=e^{x^{2}}$ to reduce in normal form we choose

$$
v=e^{-\frac{1}{2} \int(-4 x) d x}=e^{x^{2}}, R_{1}=\frac{R}{v}=\frac{e^{x^{2}}}{e^{x^{2}}}=1
$$

And $Q_{1}=\left(Q-\frac{1}{4} P^{2}-\frac{1}{2} \frac{d P}{d x}\right)=\left(4 x^{2}-\frac{1}{4}(-4 x)^{2}-\frac{1}{2} \frac{d(-4 x)}{d x}\right)=2$
$\therefore$ Equation reduces to $\frac{d^{2} u}{d x^{2}}+2 u=1 \operatorname{or}\left(D^{2}+2\right) u=1$.
Here A.E is $m^{2}+2=0 \Rightarrow m= \pm \sqrt{2 i} \therefore C . F=c_{1} \cos \sqrt{2 x}+c_{2} \sin \sqrt{2 x}$
And P.I $=\frac{1}{f(D)} R=\frac{1}{\left(D^{2}+2\right)} 1=\frac{1}{2}$ therefore $\mathrm{u}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I}=c_{1} \cos \sqrt{2} x+c_{2} \sin \sqrt{2} x+\frac{1}{2}$,
And complete solution is $\mathrm{y}=\mathrm{u} y_{1}=\left(c_{1} \cos \sqrt{2} x+c_{2} \sin \sqrt{2} x+\frac{1}{2}\right) e^{x^{2}}$. Ans.
Problem : Solve $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \operatorname{Sin} 2 x$

Solution : We have $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \operatorname{Sin} 2 x$ $\qquad$
here $p=-4 x, Q=4 x^{2}-1, R=-3 e^{x^{2}} \operatorname{Sin} 2 x$
In order to remove Ist derivative, $v=e^{-\frac{1}{2} \int p d x}=e^{-\frac{1}{2} \int-4 x d x}=e^{2 \int x d x}=e^{x^{2}}$
On putting $y=u v$, the normal equation is

$$
\begin{align*}
& \frac{d^{2} u}{d x^{2}}+Q_{1} u=R_{1}  \tag{2}\\
& \text { where } Q_{1}=Q-\frac{1}{2} \frac{d p}{d x}-\frac{p^{2}}{4} \\
& R_{1}=\frac{R}{v}=\operatorname{Re}^{\frac{1}{2} \int P d x} \\
& Q_{1}=Q-\frac{1}{2} \frac{d p}{d x}-\frac{p^{2}}{x}=\left(4 x^{2}-1\right)-\frac{1}{2}(-4)-\frac{16 x^{2}}{4}=4 x^{2}-1+2-4 x^{2}=1 \\
& R_{1}=\frac{R}{v}=\frac{-3 e^{x^{2}} \operatorname{Sin} 2 x}{e^{x^{2}}}=-3 \sin 2 x
\end{align*}
$$

Auxiliary Equation is $m^{2}+1=0 \Rightarrow m= \pm i$
Hence C.F. $=c_{1} \cos x+c_{2} \sin x$
P.I. $=\frac{1}{D^{2}+1}(-3 \sin 2 x)=\frac{-3}{-4+1} \sin 2 x=\sin 2 x$

So solution is $v=c_{1} \cos x+c_{2} \sin x+\sin 2 x$
Hence complete solution of given differential equation is $y=u v=e^{x^{2}}\left(c_{1} \cos x+c_{2} \sin x+\sin 2 x\right)$.

Solution of the $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=X$ by changing the independent variable:
Sometimes the equation is transformed into an integrable form by changing the independent variable. Let the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=X \tag{1}
\end{equation*}
$$

Let the independent variable x be changed to z by taking z as the function of x .

$$
\therefore \frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{d y}{d z} \frac{d z}{d x}\right)=\frac{d^{2} y}{d z^{2}}\left(\frac{d z}{d x}\right)^{2}+\frac{d y}{d z} \frac{d^{2} z}{d x^{2}},
$$

Substituting these value in (1), we get

$$
\begin{aligned}
& \quad\left[\frac{d^{2} y}{d z^{2}}\left(\frac{d z}{d x}\right)^{2}\right]+\frac{d^{2} z}{d x^{2}}+P\left(\frac{d y}{d z} \frac{d z}{d x}\right)+Q y=X, \\
& \text { Or } \quad \frac{d^{2} y}{d z^{2}}\left(\frac{d z}{d x}\right)^{2}+\left[\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}\right] \frac{d y}{d z}+Q y=X, \\
& \text { Or } \quad \frac{d^{2} y}{d z^{2}}+P_{1} \frac{d y}{d z}+Q_{1} y=X_{1}, \\
& \text { Where } P=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}, Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}} \text { and } X_{1}=\frac{x}{\left(\frac{d z}{d x}\right)^{2}}
\end{aligned}
$$

After obtaining equation (2) we like to choose $z$ in such a way that (2) can be easily integrating. Case 1: $P_{1}=0$

We choose $z$ to make the coefficient of $\frac{d y}{d z}$ in (2), equal to zero i.e.

$$
P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}=0 \text { or } \frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}=0 \operatorname{or} \frac{\frac{d^{2} z}{d x^{2}}}{\frac{d z}{d x}}=-P
$$

Integrating, we get $\log \frac{d z}{d x}=-\int \operatorname{Pdx}$ or $\frac{d z}{d x}=e^{-\int P d x}$
Integrating again, we get $z=\int e^{-\int P d x} d x$, this value of x reduce (2) to $\frac{d^{2} y}{d z^{2}}+Q_{1} y=X_{1}$,
Which can be easily solved provided $\mathrm{Q}_{1}$ comes out to be a constant or a constant multiplied by $\frac{1}{z^{2}}$.

Case 2: $\mathrm{Q}_{1}=\mathrm{a}^{2}$
We choose z such that $Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=a^{2} \quad$ (constant),
i.e. $a^{2} \cdot\left(\frac{d z}{d x}\right)^{2}=Q$ or $a \frac{d z}{d x}=\sqrt{Q}$, integrating gives $a z=\int \sqrt{Q} d x$.
the above value of $z$ reduces (2) to

$$
\frac{d^{2} y}{d z^{2}}+P_{1} \frac{d y}{d z}+a^{2} y+X_{1}
$$

Which can be solved easily, if $P_{1}$ comes out to be a constant.

Problem: Solve $\cos x \frac{d^{2} y}{d x^{2}}+\sin x \frac{d y}{d x}-2 y \cos ^{3} x=2 \cos ^{5} x$.
Solution: writing given equation in standard form, we have
$\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}-2 y \cos ^{3} x=2 \cos ^{4} x$.
Here $P=\tan x, Q=-2 \cos ^{2} x, X=2 \cos ^{4} x$
Changing independent variable from $x$ to $z$, equation becomes,
$\frac{d^{2} y}{d x^{2}}+P_{1} \frac{d y}{d x}+a^{2} y=X_{1,}$
Where, $P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}, Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}$ and $X_{1}=\frac{X}{\left(\frac{d z}{d x}\right)^{2}}$
Let us choose z such that $Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=-2$ (constant)
i.e., $-2 .\left(\frac{d z}{d x}\right)^{2}=-2 \cos ^{2}$ or $\frac{d z}{d x}=\cos x$, integrating gives $\mathrm{z}=\sin \mathrm{x}$.
then $P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}=\frac{-\sin x+\tan x(\cos x)}{(\cos x)^{2}}=0$ and $X_{1}=\frac{X}{\left(\frac{d z}{d x}\right)^{2}}=\frac{2 \cos ^{4} x}{(\cos )^{2}}=2 \cos ^{2} x$
Hence equation (ii) transferred to

$$
\frac{d^{2} y}{d z^{2}}-2 y=2 \cos ^{2} x, \text { or } \frac{d^{2} y}{d z^{2}}-2 y=2\left(1-\sin ^{2} x\right), \text { or } \frac{d^{2} y}{d z^{2}}-2 y=2\left(1-z^{2}\right),
$$

Or $\left(D^{2}-2\right) y=2\left(1-z^{2}\right)$,
Now C.F $=c_{1} e^{\sqrt{2} z}+c_{2} e^{-\sqrt{2} z}$

$$
P . I=\frac{1}{\left(D^{2}-2\right)} 2\left(1-z^{2}\right)=\frac{2}{-2}\left(1-\frac{D^{2}}{2}\right)^{-1}\left(1-z^{2}\right)=-\left(1+\frac{D^{2}}{2}\right)\left(1-z^{2}\right)=z^{2},
$$

Hence the solution of the given equation is

$$
\begin{aligned}
& y=c_{1} e^{\sqrt{2} z}+c_{2} e^{-\sqrt{2} z}+z^{2} \\
& \text { or } y=c_{1} e^{\sqrt{2} \sin x}+c_{2} e^{-\sqrt{2} \sin x}+(\sin x)^{2} \quad[\text { As } z=\sin x]
\end{aligned}
$$

Ans.

Problem: Solve $\left(1+x^{2}\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(1+x^{2}\right) \frac{d y}{d x}+4 y=0$.
Solution: writing equation in standard form, we have
$\frac{d^{2} y}{d x^{2}}+\frac{2 x}{\left(1+x^{2}\right)} \frac{d y}{d x}+\frac{4}{\left(1+x^{2}\right)^{2}} y=0$.
Here $P=\frac{2 x}{\left(1+x^{2}\right)}, Q=\frac{4}{\left(1+x^{2}\right)^{2}}, X=0$.
Changing independent variable from x to z , equation becomes

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+P_{1} \frac{d y}{d z}+Q_{1} y=X_{1} . \tag{ii}
\end{equation*}
$$

Where, $P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+p \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}, Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}$ and $X_{1}=\frac{X}{\left(\frac{d z}{d z}\right)^{2}}$.
Let us choose $z$ such that $P_{1}=0$ i.e $\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}=0$.
A.T.Q. $\frac{d^{2} z}{d x^{2}}+\frac{2 x}{\left(1+x^{2}\right)} \frac{d z}{d x}=0$ Putting $\frac{d z}{d x}=t$ then $\frac{d t}{d x}+\frac{2 x}{\left(1+x^{2}\right)} \frac{d z}{d x}=0$

Separating the variable and integrating, we get

$$
\log t+\log \left(1+x^{2}\right)=0 \text { or } t=\frac{1}{\left(1+x^{2}\right)}
$$

Since $\frac{d z}{d x}=t$ gives $\frac{d z}{d x}=\frac{1}{\left(1+x^{2}\right)}$ separating the variable and integrating, $z=\tan ^{-1} x$
$\therefore \quad Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=\frac{\frac{4}{\left(1+x^{2}\right)^{2}}}{\left(\frac{1}{\left(1+x^{2}\right)}\right)^{2}}=4$ and $X_{1}=\frac{0}{\left(\frac{1}{\left(1+x^{2}\right)}\right)^{2}}=0$,
Hence the transformed equation is

$$
\frac{d^{2} y}{d z^{2}}+4 y=0 .
$$

Its solution is $y=c_{1} \cos 2 z+c_{2} \sin 2 z$
Or

$$
y=c_{1} \cos 2\left(\tan ^{-1} x\right)+c_{2} \sin 2\left(\tan ^{-1} x\right) \quad\left[\text { As } z=\tan ^{-1} x\right]
$$

Ans.

## Simultaneous Differential Equation:

If two or more dependent variables are functions of a single independent variable, then the equations involving their derivatives are called simultaneous equations. For
ex. $\frac{d x}{d t}+4 y=t$

$$
\frac{d y}{d t}+2 x=e^{t}
$$

Method of solving these equations is based on the process of elimination as we solve algebraic simultaneous equations.

Problem: solve $\frac{d x}{d y}+2 y=e^{t}, \frac{d y}{d t}-2 x=e^{-t}$
Solution: The given equation in symbolic form can be written as

$$
\begin{gather*}
D x+2 y=e^{t}  \tag{1}\\
D y-2 x=e^{-t} \tag{2}
\end{gather*}
$$

Operate D on (2) and add to it 2 time of (1), we get

$$
\begin{equation*}
\left(D^{2}+4\right) y=2 e^{t}-e^{-t} \tag{3}
\end{equation*}
$$

Here A.E is $D^{2}+4=0$ i.e $D= \pm 2 i$
$\therefore \quad y_{C . F}(t)=\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)$
And $y_{P . I}(t)=\frac{1}{D^{2}+4}\left(2 e^{t}-e^{-t}\right)=2 \frac{1}{D^{2}+4} e^{t}-\frac{1}{D^{2}+4} e^{-t}=2 \frac{e^{t}}{5}-\frac{e^{-t}}{5}$
Hence $y(t)=\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+\frac{2 e^{t}}{5}-\frac{e^{-t}}{5}$
Now from (2), $x=\frac{1}{2}\left[D y-e^{-t}\right]=\frac{1}{2}\left[D\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+D\left(\frac{2}{5} e^{t}+\frac{e^{-t}}{5}-e^{-t}\right)\right]$

$$
\begin{align*}
& =\frac{1}{2}\left(-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t+\frac{2 e^{t}}{5}+\frac{e^{-t}}{5}-e^{-t}\right) \\
& =-c_{1} \sin 2 t+c_{2} \cos 2 t+\frac{e^{t}}{5}-\frac{2}{5} e^{-t} \tag{7}
\end{align*}
$$

Problem: solve $(D-1) x+D y=2 t+1,(2 D+1) x+2 D y=t$

Solution: For elimination of $y$, take difference of 2 time of $1^{\text {st }}$ from $2^{\text {nd }}$ i.e.,

$$
\begin{aligned}
& ((2 D+1) x+2 D y)-2((D-1) x+D y)=t-2(2 t+1) \\
& \text { Or } \quad 3 x=-3 t-2 \text { or } x(t)=-t-\frac{2}{3} \text { implying } \frac{d x}{d t}=-1
\end{aligned}
$$

Now using above values of $x(t)$ and $\frac{d x}{d t}$ in $1^{\text {ST }}$ Equation, we get

$$
D x-x+D y=2 t+1 \text { or }-1-\left(-t-\frac{2}{3}\right)+D y=2 t+1
$$

Implying

$$
D y=t+\frac{4}{3} \text { i.e } y(t)=\frac{t^{2}}{2}+\frac{4}{3} t+c
$$

Where c is a constant of integration.
Problem: solve $\frac{d x}{d t}-7 x+y=0, \frac{d y}{d t}-2 x-5 y=0$
Solution: The given equation in symbolic form are written as:

$$
\begin{align*}
(D-7) x+y & =0  \tag{1}\\
-2 x+(D-5) y & =0 \tag{2}
\end{align*}
$$

To eliminate $y$, operate $(D-5)$ on (1) and add the two equations to get

$$
\begin{equation*}
(D-5)(D-7) x+2 x=0 \text { or }\left(D^{2}-12 D+37\right) x=0 \tag{3}
\end{equation*}
$$

So that A.E is $\left(D^{2}-12 D+37\right)=0$ or $D=6 \pm i$

$$
\begin{equation*}
\therefore \quad x_{C F}(t)=e^{6 t}\left(c_{1} \cos t+c_{2} \sin t\right) \tag{4}
\end{equation*}
$$

Implying $\frac{d x}{d t}=e^{6 t}\left(-c_{1} \cos t+c_{2} \sin t\right)+6 e^{6 t}\left(c_{1} \cos t+c_{2} \sin t\right)$
On substituting value of $x(t)$ and $D x$ from (4) and (5) respectively in equation (1), we get

$$
e^{6 t}\left(-c_{1} \cos t+c_{2} \sin t\right)+6 e^{6 t}\left(c_{1} \cos t+c_{2} \sin t\right)-7 e^{6 t}\left(c_{1} \cos t+c_{2} \sin t\right)+y=0
$$

Or

$$
\begin{align*}
y & =e^{6 t}\left[\left(c_{1}-c_{2}\right) \cos t+\left(c_{1}+c_{2}\right) \sin t\right] \\
& =e^{6 t}[C \cos t+D \sin t] \tag{6}
\end{align*}
$$

Where, $C=c_{1}-c_{2}$ and $D=c_{1}+c_{2}$
Method of Variation of Para Meters: Method of variation of parameters is the method of finding the general solution of any second order non homogeneous linear differential equation both for variable and constant coefficients whose complementary function is known.

## Step for solution:

1. Find out the parts of C.F.
2. Let the $y_{1}$ and $y_{2}$ be parts of complementary function.
3. Consider $y=y_{1} \mathbf{u}+y_{2} \mathbf{v}$ as the complete solution of equation given
4. A and B are determined by the formula
$u=-\int \frac{-y_{2} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x+c_{1}$ and $v=\int \frac{y_{2} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x+c_{2}$
Where $c_{1}$ and $c_{2}$ are the arbitrary constants of integration.
5. Put the values of u and v in $\mathrm{y}=\mathrm{u} y_{1}+\mathrm{v} y_{2}$ to get the complete solution.

Problem: By method of variation of parameters solve the following Differential equation $y "+y=\operatorname{Sec} x$.

Solution : we have $\frac{d^{2} y}{d x^{2}}+y=\operatorname{Sec} x$ $\qquad$
A.E. is $\left(D^{2}+1\right)=0 \Rightarrow m= \pm i$

So C.F. $=c_{1} \operatorname{Cos} x+c_{2} \operatorname{Sin} x$
Here $\mathrm{y}_{1}=\operatorname{Cos} \mathrm{x}, \quad \mathrm{y}_{2}=\operatorname{Sin} \mathrm{x}$
So let complete solution of (1) is
C.S. $=u \cos x+v \sin x$

Let complete solution be $y=u y_{1}+v y_{2}=u \cos x+v \sin x$
where
$u=\int \frac{-y_{2} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x=-\int \frac{\sin x}{\{\cos x \times \cos x-(-\sin x) \sin x\}} \times \sec x d x=-\int \tan x d x+c_{1}=\log \cos x+c_{1}$ $\& v=\int \frac{y_{2} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x=\int \frac{\cos x}{\{\cos x \times \cos x-(-\sin x) \sin x\}} \times \sec x d x=\int d x+c_{2}=x+c_{2}$
hence complete solution $\mathrm{y}=u \cos x+v \sin x=\left(\log \cos x+c_{1}\right) \cos x+\left(x+c_{2}\right) \sin x$.
Problem : Solve the following differential equation by method of variation of parameters $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$

Solution : we have $\left(D^{2}-1\right) y=\frac{2}{1+e^{x}}$
A.E. is $\left(D^{2}-1\right)=0 \Rightarrow m= \pm 1$

So C.F. $=C_{1} e^{x}+C_{2} e^{-x}$
Let P.I. $=u y_{1}+v y_{2}=u e^{x}+v e^{-x}$ and $\mathrm{W}=y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}=-e^{x} e^{-x}-e^{x} e^{-x}$

$$
\begin{gathered}
\begin{array}{c}
u=\int \frac{-y_{2} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x=-\int \frac{e^{-x}}{-2} \times \frac{2}{1+e^{x}} d x=\int \frac{e^{-x}}{1+e^{x}} d x \\
\int \frac{1}{e^{x}\left(1+e^{x}\right)} d x=\int\left(\frac{1}{e^{x}}-\frac{1}{e^{x}+1}\right) d x \\
=\int e^{x} d x-\int \frac{e^{-x}}{1+e^{-x}} d x \\
=-e^{-x}+\log \left(e^{-x}+1\right)
\end{array} \\
\begin{array}{r}
\& v=\int \frac{y_{1} R}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x=\int \frac{e^{x}}{-2} \cdot \frac{2}{1+e^{x}} d x=\int \frac{e^{x}}{1+e^{x}} d x=-\log \left(1+e^{x}\right) \\
\text { P.I. }=u y_{1}+v y_{2}=\left[-e^{-x}+\log \left(e^{-x}+1\right)\right] e^{x}-e^{-x} \log \left(1+e^{x}\right) \\
=-1+e^{x} \log \left(e^{-x}+1\right)-e^{-x} \log \left(e^{x}+1\right)
\end{array}
\end{gathered}
$$

So, $y=C_{1} e^{x}+C_{2} e^{-x}-1+e^{x} \log \left(e^{-x}+1\right)-e^{-x} \log \left(e^{x}+1\right)$

## Solution of Second order differential equation by changing in dependent

## variable:

Consider second order linear differential equation.

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

## Step for solution:

1. Make the coefficient of $\frac{d^{2} y}{d x^{2}}$ as 1 if it is not so.
2. Compare the equation with standard from $y^{\prime \prime}+P y^{\prime}+Q y=R$ and get $\mathrm{P}, \mathrm{Q}$, and R
3. Choose $z$ such that $\left(\frac{d z}{d x}\right)^{2}=Q$

Here $Q$ is taken in such a way that it remains the whole square of a function without surd and its negative sign is ignored.
4. Find $\frac{d z}{d x}$ hence obtain z (on integration) and $\frac{d^{2} z}{d x^{2}}$ (on differentiation)
5. Find $P_{1}, Q_{1}$ and $R_{1}$ by the formulae

$$
P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}, Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}, R_{1}=\frac{R}{\left(\frac{d z}{d x}\right)^{2}}
$$

6. Reduced equation is $\frac{d^{2} y}{d z^{2}}+P_{1} \frac{d y}{d z}+Q_{1} y=R_{1}$ which we solve for $y$ in term of $z$.
7. We write the complete solution as $y$ in term of $x$ by replacing the value of $z$ in term of $x$.

Example: By changing the independent variable solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+4 x^{2} y=x^{4}
$$

Solution: $\quad \frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+4 x^{2} y=x^{4}$
Here,

$$
\begin{equation*}
P=-\frac{1}{x}, Q=4 x^{2}, R=x^{4} \tag{1}
\end{equation*}
$$

Choose $z$ such that $\left(\frac{d z}{d x}\right)^{2}=4 x^{2}$
$\Rightarrow \quad \frac{d z}{d x}=2 x$

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}^{2} \text { (on integration) } \tag{2}
\end{equation*}
$$

(Differentiating (2) w.r.t
x)
$P_{1}=\frac{\frac{d^{2} z}{d x^{2}}+P \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^{2}}=\frac{2-\frac{1}{x}(2 x)}{4 x^{2}}=0$
$Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=\frac{4 x^{2}}{4 x^{2}}=1$
$R_{1}=\frac{R}{\left(\frac{d z}{d x}\right)^{2}}=\frac{x^{4}}{4 x^{4}}=\frac{x^{2}}{4}$
Reduced equation is

$$
\frac{d^{2} y}{d x^{2}}+y=\frac{z}{4}
$$

$$
\left[\therefore z=x^{2} \text { from }(3)\right]
$$

Auxiliary equation is,

$$
\begin{aligned}
& m^{2}+1=0 \quad \Rightarrow \quad m= \pm i \\
& \text { C.F }
\end{aligned}=c_{1} \cos z+c_{2} \sin z .
$$

(Leaving higher powers)
$\therefore$ solution is $y=c_{1} \cos z+c_{2} \sin z+\frac{z}{4}$
Complete solution is given by

$$
y=c_{1} \cos \left(x^{2}\right)+c_{2} \sin \left(x^{2}\right)+\frac{x^{2}}{4}
$$

Example: By changing the independent variable solve the differential equation $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$

Solution: $\quad \frac{d^{2} y}{d x^{2}}+\frac{1}{(1+x)} \frac{d y}{d x}+\frac{y}{(1+x)^{2}}=\frac{4}{(1+x)^{2}} \cos \log (1+x)$
Choose z such that,

$$
\begin{align*}
& \quad\left(\frac{d z}{d x}\right)^{2}=\frac{1}{(1+x)^{2}} \\
& \Rightarrow \quad \frac{d z}{d x}=\frac{1}{1+x} \tag{2}
\end{align*}
$$

Integration yields, $z=\log (1+x)$
From (2), $\frac{d^{2} z}{d x^{2}}=-\frac{1}{(1+x)^{2}}$

$$
P_{1}=\frac{\frac{1}{(1+x)^{2}}+\frac{1}{(1+x)}+\frac{1}{(1+x)}}{\frac{1}{(1+x)^{2}}}=0
$$

$$
Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=1
$$

$$
R_{1}=\frac{R}{\left(\frac{d z}{d x}\right)}=4 \cos \log (1+x)=4 \cos z
$$

Reduced equation is

$$
\frac{d^{2} y}{d x^{2}}+y=4 \cos z
$$

Auxiliary equation is $m^{2}+1=0 \Rightarrow m= \pm i$

$$
\begin{aligned}
& C . F=c_{1} \cos z+c_{2} \sin z \\
& \text { P. } I=\frac{1}{D^{2}+1}(4 \cos z)=4, \frac{z}{2} \sin z=2 z \sin z
\end{aligned}
$$

Complete solution is

$$
\begin{aligned}
& y=c_{1} \cos z+c_{2} \sin z+2 z \sin z \\
& y=c_{1} \cos \log (1+x)+c_{2} \sin \log (1+x)+2 \log (1+x) \sin \log (1+x) .
\end{aligned}
$$

## Series solution of second order ODEs

## Ordinary and singular points:

Consider the second order differential equation of the form,

$$
\begin{aligned}
& y^{\prime \prime}+P(X) y^{\prime}+Q(x) y=0 \\
& x P(X), x^{2} Q(x) \text { are Analytic } x=0 \\
& \Rightarrow P(X), Q(x) \text { are not Analytic } x=0 \\
& \Rightarrow x=0 \text { is a regular singulanor point }
\end{aligned}
$$

Ordinary point: A point $x=x_{0}$ is called an ordinary point of the equation Eq. (1) if both $P(x), Q(x)$ are analytic at $x=x_{0}$
singular point: if the point $x=x_{0}$ is not an ordinary point of the equation $E q(1)$, then it is called a singular point. There are two types of singular points.

Regular singular point: A singular point $x=x_{0}$ is called regular singular point of the equation $E q(1)$
if both $\left(x-x_{0}\right) P(x),\left(x-x_{0}\right)^{2} Q(x)$ are analytic at $\mathrm{x}=\mathrm{x}_{0}$
Irregular singular point: A singular point, which is not regular is called irregular singular point.
Example verify that origin is an ordinary point of regular singular point of the equations

1. $Y^{\prime \prime}+x y^{\prime}+y=0$
2. $2 x^{2} y^{\prime \prime}+x y^{\prime}-(x+1) y=0$

Example- verify that origin is an ordinary point or singular point of the equations.

1. $y^{\prime \prime}+x y^{\prime}+y=0$
2. $2 x^{2} y^{\prime \prime}+x y^{\prime}-(x+1) y=0$

## Solution:

1. The equation is $y^{\prime \prime}+x y^{\prime}+y=0$

Compare this with $y^{\prime \prime}+P(X) y^{\prime}+Q(x) y=0$
Therefore $P(X)=\frac{1}{2 x^{2}}, Q(x)=-\frac{(x+1)}{2 x^{2}}$
$\Rightarrow$ At $x=0, P(X)$ and $Q(x)$ are defined.
$\Rightarrow P(X), Q(x)$ are Analytic $x=0$
$\Rightarrow x=0$ is ordinary point
2. Dividing the equation by $2 x^{2}$ i.e., $y^{\prime \prime}+\frac{y^{\prime}}{2 x^{2}}-\frac{(x+1)}{2 x^{2}} y=0$

Compare this with $y^{\prime \prime}+P(X) y^{\prime}+Q(x) y=0$
Therefore $P(X)=\frac{1}{2 x^{2}}, Q(x)=-\frac{(x+1)}{2 x^{2}}$
At $\mathrm{x}=0, \mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x})$ are not defined.
$\Rightarrow P(X), Q(x)$ are not Analytic $x=0$
$\Rightarrow x=0$ is not an ordinary point
$\Rightarrow x=0$ is a singular point
Now, $x P(X)=\frac{1}{2}, x^{2} Q(x)=-\frac{(x+1)}{2}$
$x P(X), x^{2} Q(x)$ are Analytic $x=0$
$\Rightarrow x=0$ is a regular singulanor point
Example: verify that $x=1$ is a regular point of the equation

$$
\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

Solution: Dividing the equation by $\left(x^{2}-1\right)$ i.e.

$$
y^{\prime \prime}+\frac{x}{\left(x^{2}-1\right)} y^{\prime}-\frac{1}{\left(x^{2}-1\right)} y=0
$$

Compare this with $y^{\prime \prime}+P(X) y^{\prime}+Q(x) y=0$
Therefore $\quad p(x)=\frac{x}{\left(x^{2}-1\right)}, Q(x)=-\frac{1}{\left(x^{2}-1\right)}$
$\Rightarrow$ At $x=1, p(x), Q(x)$ are not defined.
$\Rightarrow p(x), Q(x)$ are not analytic $x=1$
$\Rightarrow x=1$ is not an ordinary po int
$\Rightarrow x=1$ is a singular po int
Now

$$
\begin{aligned}
& (x-1) P(x)=(x-1) \frac{x}{\left(x^{2}-1\right)}=\frac{x(x-1)}{(x-1)(x+1)}=\frac{x}{(x+1)} \& \\
& (x-1)^{2} Q(x)=(x-1)^{2} \times-\frac{1}{\left(x^{2}-1\right)}=\frac{(x-1)^{2}}{(x-1)(x+1)}=-\frac{x-1}{(x+1)} \\
& \Rightarrow x=1,(x-1) P(x) \&(x-1)^{2} Q(x) \text { are defined } .
\end{aligned}
$$

$\Rightarrow x=1$ is a Regular singular point.

## Series solution about an ordinary point at $x=x_{0}$ :

A point $x=x_{0}$ is an ordinary point of the differential equation

$$
y^{\prime \prime}+p(x)+y^{\prime}+Q(x) y=0
$$

If $y, y^{\prime}, y^{\prime \prime}$ are regular (I. e. analytic and single-valued) there. The general solution near such an ordinary point can be represented by a Taylor series i. e.

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

Example: Find the series solution for $y^{\prime \prime}+y=0$ at $x=0$
Solution : comparing the given equation with $y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0$
Here $p(x)=0, Q(x)=1$
Therefore at $x=0, p(x), Q(x)$ are analytic at $x=0$
$\Rightarrow x=0$ is an ordinary point

Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$

Be a solution of (1)

$$
\therefore y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \& y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Eq.(1) become, $\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=0$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \sum_{n=0}^{\infty}\left\{(n+2)(n+1) a_{n+2} x^{n}+a_{n}\right\} x^{n}=0 \\
& (n+2)(n+1) a_{n+2}+a_{n}=0 \\
& a_{n+2}=-\frac{a_{n}}{(n+2)(n+1)}, n=0,1,2, \ldots \ldots \ldots . .
\end{aligned}
$$

$\mathrm{n}=0: a_{2}=\frac{1}{(0+2)(0+1)} a_{0}=-\frac{1}{(2)(1)} a_{0}=-\frac{1}{2!} a_{0} ;$
$\mathrm{n}=1: a_{3}=\frac{1}{(2+1)(1+1)} a_{1}=-\frac{1}{(3)(2)} a_{1}=\frac{1}{3!} a_{1} ;$
$\mathrm{n}=2: a_{4}=-\frac{1}{(2+2)(2+1)} a_{2}=-\frac{1}{(4)(3)} a_{2}=-\frac{1}{(4)(3)} \times \frac{1}{2!} a_{0}=\frac{1}{4!} a_{0}$;
$\mathrm{n}=3: a_{5}=-\frac{1}{(3+2)(3+1)} a_{3}=-\frac{1}{(5)(4)} a_{3}=-\frac{1}{(5)(4)} a_{3}=-\frac{1}{(5)(4)} \times \frac{1}{3!} a_{1}=\frac{1}{5!} a_{1} ;$
and so on .........
substitute the values in equation Eq. (2)
i.e. $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$

$$
\begin{aligned}
& =a_{0}+a_{1} x+\left(-\frac{1}{2!} a_{0}\right) x^{2}+\left(-\frac{1}{3!} a_{1}\right) x^{3}+\left(\frac{1}{4!} a_{0}\right) x^{4}+\left(\frac{1}{5!} a_{1}\right) x^{5} . \\
& =a_{0}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \ldots\right)+a_{1}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \ldots\right)
\end{aligned}
$$

$$
=a_{0} \cos x+a_{1} \sin x
$$

So $y=a_{0} \cos x+a_{1} \sin x$ is the required solution of equation (1).
Example: Find the series solution at the origin of differential equation

$$
\begin{equation*}
(x-1) y^{\prime \prime}+2 y^{\prime}=0 \tag{1}
\end{equation*}
$$

Solution: Rewrite the above equation as $\quad y^{\prime \prime}+\frac{2}{x-1} y^{\prime}=0$
Comparing the given equation with $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$
Here $\quad P(x)=\frac{2}{x-1}, Q(x)=0$
Therefore at $x=0, P(x), Q(x)$ are analytic at $x=0$.
$\Rightarrow x=0$ is an ordinary point.
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0} a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots$
Be a solution of Eq. (1). $\therefore y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \& y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}$
Eq.(1) becomes, $(x-1) \sum_{n=2}^{\infty} n(n+1) a_{n} x^{n-2}+2 \sum_{n=2}^{\infty} n a_{n} x^{n-1}=0$
$\Rightarrow x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+2 \sum_{n=1}^{\infty} n a_{n} x^{n-1}=0$
$\Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=0$
$\Rightarrow \sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} 2(n+1) a_{n+1} x^{n}=0$
$\Rightarrow \sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-\sum_{n=0}^{\infty}\left\{(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}\right\} x^{n}=0$
$\left.\Rightarrow \sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-(0+2)(0+1) a_{2}-2(0+1) a_{n+1}\right\} x^{0}=0$
$\left.-\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-(0+2)(0+1) a_{2}-2(0+1) a_{n+1}\right\} x^{n}=0$
$\Rightarrow \sum_{n=1}^{\infty}\left[(n+1) n a_{n+1}-\left\{(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}\right\}\right] x^{n}-\left\{(2)(1) a_{2}-2(1) a_{1}\right\} x^{0}=0$
$\Rightarrow \sum_{n=1}^{\infty}\left[(n+1) n a_{n+1}-(n+2)(n+1) a_{n+2}+2(n+1) a_{n+1}\right] x^{n}-\left\{2 a_{2}-2 a_{1}\right\} x^{0}=0$
$\Rightarrow \sum_{n=1}^{\infty}\left[\{(n+1) n-2(n+1)\} a_{n+1}-(n+2)(n+1) a_{n+2}\right] x^{n}-\left\{2 a_{2}-2 a_{1}\right\} x^{0}=0$
$\Rightarrow \sum_{n=1}^{\infty}\left[(n+1)(n+2) a_{n+1}-(n+2)(n+1) a_{n+2}-(n+2)(n+1) a_{n+2}\right] x^{n}-\left\{2 a_{2}-2 a_{1}\right\} x^{0}=0$
Equating various power of $x$

$$
\begin{aligned}
& \text { i.e, } 2 a_{2}-2 a_{1}=0,(n+1)(n+2) a_{n+1}-(n+2)(n+1) a_{n+2}=0 \\
& \Rightarrow 2\left(a_{2}-a_{1}\right)=0,(n+1)(n+2)\left(a_{n+1}-a_{n+2}\right)=0 \\
& \Rightarrow a_{2}-a_{1}=0, a_{n+1}-a_{n+2}=0 \\
& \Rightarrow a_{2}=a_{1}, a_{n+2}=a_{n+1} n \geq 1
\end{aligned}
$$

Since, $a_{n+2}=a_{n+1}$
$n=1 ; a_{3}=a_{2}=a_{1}\left(\because a_{2}=a_{1}\right) ;$
$n=2 ; a_{4}=a_{3}=a_{1}\left(\because a_{3}=a_{1}\right) ;$
$n=3 ; a_{5}=a_{4}=a_{1}\left(\because a_{4}=a_{1}\right) ;$
$n=4 ; a_{6}=a_{5}=a_{1}\left(\because a_{5}=a_{1}\right) ;$
Substitute the values in equation Eq. (2)
i.e

$$
\begin{align*}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots . . \\
& =a_{0}+a_{1} x+a_{1} x^{2}+a_{1} x^{3}+a_{1} x^{4}+a_{1} x^{5}+\ldots \ldots \ldots . . \\
& =a_{0}+a_{1}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots \ldots \ldots\right) \\
& =a_{0}+a_{1} x\left(1+x+x^{3}+x^{4}+\ldots \ldots \ldots\right) \\
& =a_{0}+a_{1} \frac{x}{1-x},\left(\because \frac{x}{1-x}=1+x+x^{3}+x^{4}+\ldots \ldots \ldots\right)
\end{align*}
$$

$\therefore y=a_{0}+a_{1} \frac{x}{1-x}$ is the required solution of equation Eq. (1).
Example: Find the series solution for $\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}-y=0$ at $x=0$.(1)
Solution: Rewrite the above equation as $y^{\prime \prime}+\frac{x}{\left(1+x^{2}\right)} y^{\prime}-\frac{1}{\left(1+x^{2}\right)} y=0$

Comparing the given equation with $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$
Here $P(x)=\frac{x}{\left(1-x^{2}\right)}, Q(x)=-\frac{1}{\left(1-x^{2}\right)}$
Therefore at $x=0, P(x), Q(x)$ are analytic at $x=0$.
$\Rightarrow x=0$ is an ordinary point.
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$
Be a solution of (1)

$$
\therefore y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \& y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Eq.(1) becomes, $\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$
$\Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x^{2} \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$
$\Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$
$\Rightarrow \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$
$\Rightarrow(n+2)(n-1) a_{0+2} x^{0}+(1+2)(1+1) a_{0+2} x^{1}+\sum_{n=2}^{\infty}(n+2)(n-1) a_{n+2} x^{n}$
$+\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+(1) a_{1} x^{1}+\sum_{n=2}^{\infty} n a_{n} x^{n}-\left(a_{0} x^{0}+a_{1} x^{1}+\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0$
$\Rightarrow 2 a_{2} x^{0}+(3)(2) a_{3} x+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}$
$+a_{1} x+\sum_{n=2}^{\infty} n a_{n} x^{n}-a_{0} x^{0}-a_{1} x-\sum_{n=2}^{\infty} a_{n} x^{n}=0$
$\Rightarrow 2 a_{2} x^{0}+6 a_{3} x+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+a_{1} x+\sum_{n=2}^{\infty} n a_{n} x^{n}-a_{0} x^{0}-a_{1} x-\sum_{n=2}^{\infty} a_{n} x^{n}=0$
$\Rightarrow\left(2 a_{2}+a_{0}\right) x^{0}+\left(6 a_{3}+a_{1}-a_{1}\right) x+\sum_{n=2}^{\infty}\left\{(n+2)(n+1) a_{n+2}+[n(n-1)+n-1] a_{n}\right\} x^{n}=0$
$\Rightarrow\left(2 a_{2}-a_{0}\right) x^{0}+\left(6 a_{3}\right) x+\sum_{n=2}^{\infty}\left\{(n+2)(n+1) a_{n+2}+[n(n-1)+n-1] a_{n}\right\} x^{n}=0$
$\Rightarrow\left(2 a_{2}-a_{0}\right) x^{0}+\left(6 a_{3}\right) x+\sum_{n=2}^{\infty}\left\{(n+2)(n+1) a_{n+2}+\left[n^{2}-n+n-1\right] a_{n}\right\} x^{n}=0$
$\Rightarrow\left(2 a_{2}-a_{0}\right) x^{0}+\left(6 a_{3}\right) x+\sum_{n=2}^{\infty}\left\{(n+2)(n+1) a_{n+2}+\left[n^{2}-1\right] a_{n}\right\} x^{n}=0$
Equating various power of $x$
i.e. $2 a_{2}-a_{0}=0,6 a_{3}=0,(n+2)(n+1) a_{n+2}+\left[n^{2}-1\right] a_{n}=0$
$\Rightarrow 2 a_{2}=a_{0}, a_{3}=0,(n+2)(n+1) a_{n+2}-\left[n^{2}-1\right] a_{n}$
$\Rightarrow a_{2}=\frac{a_{0}}{2}, a_{3}=0, a_{n+2}-\frac{\left[n^{2}-1\right] a_{n}}{(n+2)(n+1)}, n \geq 2$
Now,
$a_{n+2}=-\frac{\left[n^{2}-1\right] a_{n}}{(n+2)(n+1)}=-\frac{(n-1)(n+1) a_{n}}{(n+2)(n+1)}=-\frac{(n-1) a_{n}}{(n+2)}, n=2,3$,
This is the recurrence relation.

$$
\begin{aligned}
& n=2: a_{4}=\frac{(2-1) a_{2}}{(2+2)}=-\frac{1}{4} a_{2}=-\frac{1}{4} \frac{a_{0}}{2}=-\frac{a_{0}}{8}\left(\because a_{2}=\frac{a_{0}}{2}\right) \\
& n=3: a_{5}=-\frac{(3-1) a_{3}}{(3+2)}=-\frac{2}{5} a_{3}=0\left(\because a_{3}=0\right) \\
& n=4: a_{6}=-\frac{(4-1) a_{4}}{(4+2)}=-\frac{3}{6} a_{4}=-\frac{1}{2} \times-\frac{a_{0}}{8}=\frac{a_{0}}{16}\left(\because a_{4}=-\frac{a_{0}}{8}\right)
\end{aligned}
$$

Substitute the values in equation Eq. (2)
i.e. $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$
$=a_{0}+a_{1} x+\left(\frac{1}{2} a_{0}\right) x^{2}+(0) x^{3}+\left(-\frac{a_{0}}{8}\right) x^{4}+(0) x^{5}+\left(\frac{a_{0}}{16}\right) x^{6}+\ldots \ldots \ldots$
$=a_{0}\left(1+\frac{1}{2} x^{2}-\frac{x^{4}}{8}+\frac{x^{6}}{16}+\ldots ..\right)+a_{1}(x)$
$\therefore y=a_{0}\left(1+\frac{1}{2} x^{2}-\frac{x^{4}}{8}+\frac{x^{6}}{16}+\ldots \ldots.\right)+a_{1}(x) \quad$ is the required solution of Eq. (1)

## EXERCISE

1. Find the power series solution of the equation $y^{\prime \prime}+y^{\prime}+y=0$
2. Find the general solution of $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$ in term of power series in x .

$$
\text { 1. } y=a_{0}\left\{1-\frac{x^{2}}{2}+\frac{x^{4}}{2.4}-\ldots \ldots .\right\}+a_{1}\left\{x-\frac{x^{3}}{3}+\frac{x^{5}}{3.5}-\ldots \ldots\right\}
$$

Ans:

$$
\text { 2. } y=a_{0}\left\{1+x^{2}-\frac{x^{4}}{3}-\ldots \ldots . .\right\}+a_{1} x
$$

Series solution about regular singular point at $x=x_{0}$ :
A point $x=x_{0}$ is a regular point of the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

If $y, y^{\prime}, y^{\prime \prime}$ are not all regular there, but $\left(x-x_{0}\right) y^{\prime},\left(x-x_{0}\right)^{2} y$ are all regular at $x_{0}$. This essentially implies that $\mathrm{y}(\mathrm{x})$ must have a fixed order divergence (or pole) at $x_{0}$. The general solution near such a regular singular point can be represented by a Frobenius series

$$
y(x)=x^{m} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

With $a_{0} \neq 0$ and note that m is not necessarily an integer.
Example: Find the series solution of $4 x y^{\prime \prime}+2 y^{\prime}+y=0$ by Frobenius method

Solution: Consider the ode $4 x y^{\prime \prime}+2 y^{\prime}+y=0$

Now, we can rewrite the above Eq. (1) as $y^{\prime \prime}+\frac{1}{2 x} y^{\prime}+\frac{1}{4 x} y=0$

Comparing this with $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$,

Here $p(x)=\frac{1}{2 x}, Q(x)=\frac{1}{4 x}$.

Therefore, at $\mathrm{x}=0$ is not an ordinary point i.e., it is singular point.

Now, $y^{\prime \prime}+x P(x)=\frac{1}{2}, x^{2} Q(x)=\frac{x}{4} \Rightarrow x P(x), x^{2} Q(x)$ are analytic at $\mathrm{x}=0$
$\Rightarrow x=0$ is a regular singular point.

We use Frobenius method for the solution of equation Eq. (1)

Let $y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{m+n}$

Be a solution of Eq. (1).
$\therefore y^{\prime \prime}=\sum_{n=0}^{\infty}(m+n) a_{n} x^{m+n-1} \& \sum_{n=0}^{\infty}(m+n)(m+n-1) a_{n} x^{m+n-2}$

Eq. (1) becomes,

$$
\begin{aligned}
& 4 x \sum_{n=0}^{\infty}(m+n)(m+n-1) a_{n} x^{m+n-2}+2 \sum_{n=0}^{\infty}(m+n) a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 4(m+n)(m+n-1) a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} 2(m+n) a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty}\{4(m+n)(m+n-1)+2(m+n)\} a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 2(m+n)\{2(m+n-1)+1\} a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 2(m+n)\{2 m+2 n-2+1\} a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 2(m+n)(2 m+2 n-2+1) a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 2(m+n)(2 m+2 n-1) a_{n} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0
\end{aligned}
$$

$$
\Rightarrow \sum_{n=-1}^{\infty} 2(m+n+1)(2 m+2(n+1)-1) a_{n+1} x^{m+n+1-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0
$$

$$
\Rightarrow \sum_{n=-1}^{\infty} 2(m+n+1)(2 m+2(n+1)-1) a_{n+1} x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0
$$

$$
\Rightarrow \sum_{n=-1}^{\infty} 2(m+n+1)(2 m+2 n+2-1) a_{n+1} x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0
$$

$$
\Rightarrow \sum_{n=-1}^{\infty} 2(m+n+1)(2 m+2 n+1) a_{n+1} x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0
$$

$\Rightarrow 2(m-n+1)(2 m+2(-1)+1) a_{0} x^{m-1}+\sum_{n=-1}^{\infty} 2(m+n+1)(2 m+2 n+1) a_{n+1} x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n}=0$
$\Rightarrow 2(m)(2 m-2+1) a_{0} x^{m-1}+\sum_{n=-1}^{\infty}\left\{2(m+n+1)(2 m+2 n+1) a_{n+1}+a_{n}\right\} x^{m+n}=0$
$\Rightarrow 2(m)(2 m-1) a_{0} x^{m-1}+\sum_{n=-1}^{\infty}\left\{2(m+n+1)(2 m+2 n+1) a_{n+1}+a_{n}\right\} x^{m+n}=0$

Equating to zero the coefficient of lowest power and highest power i.e.

$$
\begin{equation*}
x^{m-1}: 2(m)(2 m-1) a_{0}=0 \tag{3}
\end{equation*}
$$

Which called an Indicial equation \&
$x^{m+n}: 2(m+n+1)(2 m+2 n+1) a_{n+1}+a_{n}=0$

Which is called Recurrence relation.

## Solving eq. (3) i.e.

$2(m)(2 m-1) a_{0}=0 \Rightarrow m(2 m-1)=0\left(\because a_{0} \neq 0\right)$
$\Rightarrow m=0, m=\frac{1}{2}$.

Solving Eq. (4) i.e.
$2(m+n+1)\{2 m+2 n+1\} a_{n+1}-\{2 m+2 n+1\} a_{n}=0$
$\Rightarrow a_{n+1}=-\frac{1}{2(m+n+1)(2 m+2 n+1)} a_{n}, n \geq 0$

When $m=0$, then the equation Eq. (5) reduces to
$\Rightarrow a_{n+1}=-\frac{1}{2(n+1)(2 n+1)} a_{n}, n \geq 0$

Putting the values of $n=0,1,2$,
$n=0: a_{1}=-\frac{1}{2(1)(1)} a_{0}=-\frac{1}{2} a_{0}=-\frac{1}{2!} a_{0}$,
$n=1: a_{2}=-\frac{1}{2(1+1)(2 \times 1+1)} a_{1}=-\frac{1}{(4)(3)} a_{1}=-\frac{1}{(4)(3)} \times-\frac{1}{2!} a_{0}=\frac{1}{4!} a_{0}$
$n=2: a_{3}=-\frac{1}{2(2+1)(2 \times 2+1)} a_{2}=-\frac{1}{2(3)(5)} a_{2}=-\frac{1}{(6)(5)} \times \frac{1}{4!} a_{0}=-\frac{1}{6!} a_{0}$

And so on.

Substitute these values in Eq. (2)

$$
\begin{aligned}
& y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots\right) \\
& y=x^{0}\left\{a_{0}+\left(-\frac{1}{2!} a_{0}\right) x+\left(\frac{1}{4!} a_{0}\right) x^{2}+\left(-\frac{1}{6!} a_{0}\right) x^{3}+\ldots \ldots\right\} \\
& y=a_{0}\left\{1-\frac{1}{2!} x+\frac{1}{4!} x^{2}-\frac{1}{6!} x^{3}+\ldots \ldots\right\}
\end{aligned}
$$

One solution of the given equation is

$$
\begin{equation*}
u=1-\frac{1}{2!} x+\frac{1}{4!} x^{2}-\frac{1}{6!} x^{3}+\ldots \ldots .\left(\text { taking } a_{0}=1\right) \tag{6}
\end{equation*}
$$

When $m=\frac{1}{2}$, then the equation Eq. (5) reduces to

$$
\begin{aligned}
\Rightarrow a_{n+1} & =-\frac{1}{2\left(\frac{1}{2}+n+1\right)\left(2 \times \frac{1}{2}+2 n+1\right)} a_{n}, n \geq 0 \\
& =-\frac{1}{(1+2 n+2)(1+2 n+1)} a_{n} \\
& =-\frac{1}{(2 n+3)(2 n+2)} a_{n}
\end{aligned}
$$

Putting the values of $n=0,1,2, \ldots \ldots . . .$.

$$
\begin{aligned}
& n=0: a_{1}=\frac{a_{0}}{1+2(0)+2}=\frac{a_{0}}{1+2}=\frac{a_{0}}{3} \\
& y=a u+b v \\
& n=1: a_{2}=\frac{a_{1}}{1+2(1)+2}=\frac{a_{1}}{1+2+2}=\frac{a_{1}}{5}=\frac{1}{5} \frac{a_{0}}{3}=\frac{a_{0}}{15}\left(\because a_{1}=\frac{a_{0}}{3}\right) \\
& n=2: a_{3}=\frac{a_{2}}{1+2(2)+2}=\frac{a_{2}}{1+4+2}=\frac{a_{2}}{7}=\frac{1}{7} \times \frac{a_{0}}{15}=\frac{a_{0}}{105}\left(\because a_{2}=\frac{a_{0}}{15}\right)
\end{aligned}
$$

c
$v=x^{\frac{1}{2}}\left[1+\left(\frac{1}{3}\right) x+\left(\frac{1}{15}\right) x^{2}+\left(\frac{1}{105}\right) x^{3}+\ldots.\right]\left(\right.$ taking $\left.a_{0}=1\right)$
$n=1: a_{2}=-\frac{1}{(2+1)(2+2)} a_{1}=-\frac{1}{(5)(4)} a_{1}=-\frac{1}{(5)(4)} \times-\frac{1}{3!} a_{0}=\frac{1}{5!} a_{0}$
$n=2: a_{3}=-\frac{1}{(2 \times 2+3)(2 \times 2+2)} a_{2}=-\frac{1}{(7)(6)} a_{2}=-\frac{1}{(7)(6)} \times \frac{1}{5!} a_{0}=-\frac{1}{7!} a_{0}$ and so on.

Substitute these values in Eq. (2)

$$
\begin{aligned}
& y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots . .\right) \\
& y=x^{\frac{1}{2}}\left\{a_{0}+\left(-\frac{1}{3!} a_{0}\right) x+\left(\frac{1}{5!} a_{0}\right) x^{2}+\left(-\frac{1}{7!} a_{0}\right) x^{3}+\ldots \ldots\right\} \\
& y=a_{0}\left(x^{\frac{1}{2}}\left\{1-\left(-\frac{1}{3!}\right) x+\left(\frac{1}{5!}\right) x^{2}+\left(-\frac{1}{7!}\right) x^{3}+\ldots \ldots\right\}\right)
\end{aligned}
$$

Another solution of the given equation is
$v=x^{\frac{1}{2}}\left\{1-\left(\frac{1}{3!}\right) x+\left(\frac{1}{5!}\right) x^{2}+\left(\frac{1}{7!}\right) x^{3}+\ldots \ldots\right\} \quad$ (taking $\left.a_{0}=1\right)$

Therefore, the complete solution of the differential equation is
$y=a u+b v$, where $u$ and $v$ are given in equation Eq. (6) and (7) respectively.

Example: solve the differential equation
$4 x y^{\prime \prime}+2(1-x) y^{\prime}-y=0$ by Frobenius method of power series solution.

Solution: consider the differential equation $4 x y^{\prime \prime}+2(1-x) y^{\prime}-y=0$

Now, we can rewrite the above Eq. (1) as
$y^{\prime \prime}+\frac{(1-x)}{2 x} y^{\prime}-\frac{1}{4 x} y=0$
$P(x)=\frac{(1-x)}{2 x}, Q(x)=-\frac{1}{4 x}$

Comparing this with $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Here $P(x)=\frac{(1-x)}{2 x}, Q(x)=-\frac{1}{4 x}$.

Therefore at $\mathrm{x}=0, \mathrm{Q}(\mathrm{x})$ is not analytic at $x=0$.
$\Rightarrow x=0$ is not ordinary point i.e. it is singular point.

Now, $x P(x)=\frac{(1-x)}{2}, x^{2} Q(x)=-\frac{x}{4} \Rightarrow x P(x), x^{2} Q(x)$ are analytic at $x=0$
$\Rightarrow x=0$ is a regular singular point.

We use Frobenius method for the solution of equation Eq. (1)

Let $y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{m+n}$
$\therefore y^{\prime \prime}=\sum_{n=0}^{\infty}(m+n) a_{n} x^{m+n-1} \& \sum_{n=0}^{\infty}(m+n)(m+n-1) a_{n} x^{m+n-2}$
$m=0 \& m=\frac{1}{2}$

Solving Eq.(4) i.e.
$2(m+n+1)\{2 m+2 n+1\} a_{n+1}-\{2 m+2 n+1\} a_{n}=0$
$\Rightarrow(2 m+2 n+1)\left[2\{m+n+1\} a_{n+1}-a_{n}\right]=0$
$\Rightarrow 2\{m+n+1\} a_{n+1}-a_{n}=0$
$\Rightarrow a_{n+1}=\frac{a_{n}}{2\{m+n+1\}}, n \geq 0$

When $m=0$, then the equation Eq. (5) reduces to
$\Rightarrow a_{n+1}=\frac{a_{n}}{2\{0+n+1\}}, n \geq 0$
$\Rightarrow a_{n+1}=\frac{a_{n}}{2(n+1)}, n \geq 0$

Putting the value of $n=0,1,2$,
$n=0: a_{1}=\frac{1}{2(0+1)} a_{0}=\frac{1}{2} a_{0}$
$n=1: a_{2}=\frac{1}{2(1+1)} a_{1}=\frac{1}{2(2)} a_{1}=\frac{1}{4} a_{1}=\frac{1}{4} \times \frac{1}{2} a_{0}=\frac{1}{8} a_{0}\left(\because a_{1}=\frac{1}{2} a_{0}\right)$
$n=2: a_{3}=\frac{1}{2(2+1)} a_{2}=\frac{1}{2(3)} a_{2}=\frac{1}{6} a_{2}=\frac{1}{6} \times \frac{1}{8} a_{0}=\frac{1}{48} a_{0}\left(\because a_{2}=\frac{1}{8} a_{0}\right)$

And so on.

Substitute these values in Eq. (2)

$$
\begin{aligned}
& y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots\right) \\
& y=x^{0}\left\{a_{0}+\left(\frac{a_{0}}{2}\right) x+\left(\frac{a_{0}}{8}\right) x^{2}+\left(\frac{a_{0}}{48}\right) x^{3}+\ldots \ldots\right\}
\end{aligned}
$$

$$
y=a_{0}\left\{1+\left(\frac{1}{2}\right) x+\left(\frac{1}{8}\right) x^{2}+\left(\frac{1}{48}\right) x^{3}+\ldots \ldots\right\}
$$

One solution of the given equation is

$$
\begin{equation*}
u=\left\{1+\left(\frac{1}{2}\right) x+\left(\frac{1}{8}\right) x^{2}+\left(\frac{1}{48}\right) x^{3}+\ldots \ldots\right\}\left(\text { taking } a_{0}=1\right) \tag{6}
\end{equation*}
$$

When $m=\frac{1}{2}$,then the equation Eq. (5) reduces to
$a_{n+1}=\frac{a_{n}}{2\left\{\frac{1}{2}+n+1\right\}}=\frac{a_{n}}{2\left\{\frac{1+2 n+2}{2}\right\}}=\frac{a_{n}}{1+2 n+2}, n \geq 0$

Putting the values of $n=0,1,2, \ldots$
$n=0: a_{1}=\frac{a_{0}}{1+2(0)+2}=\frac{a_{0}}{1+2}=\frac{a_{0}}{3}$
$n=1: a_{2}=\frac{a_{1}}{1+2(1)+2}=\frac{a_{1}}{1+2+2}=\frac{a_{1}}{5}=\frac{1}{5} \frac{a_{0}}{3}=\frac{a_{0}}{15}\left(\because a_{1}=\frac{a_{0}}{3}\right)$
$n=2: a_{3}=\frac{a_{2}}{1+2(2)+2}=\frac{a_{2}}{1+4+2}=\frac{a_{2}}{7}=\frac{1}{7} \times \frac{a_{0}}{15}=\frac{a_{0}}{105}\left(\because a_{2}=\frac{a_{0}}{15}\right)$

And so on.

Substitute these values in Eq. (2)
$y=x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots ..\right)$
$y=x^{\frac{1}{2}}\left\{a_{0}+\left(\frac{a_{0}}{3}\right) x+\left(\frac{a_{0}}{15}\right) x^{2}+\left(\frac{a_{0}}{105}\right) x^{3}+\ldots \ldots\right\}$
$y=a_{0}\left(x^{\frac{1}{2}}\left\{1+\left(\frac{1}{3}\right) x+\left(\frac{1}{15}\right) x^{2}+\left(\frac{1}{105}\right) x^{3}+\ldots \ldots\right\}\right)$

Another solution of the given equation is
$v=x^{\frac{1}{2}}\left[1+\left(\frac{1}{3}\right) x+\left(\frac{1}{15}\right) x^{2}+\left(\frac{1}{105}\right) x^{3}+\ldots.\right]\left(\right.$ taking $\left.a_{0}=1\right)$

Therefore, the complete solution of the differential Eq. (6) and (7)
$y=a u+b v$, where $u$ and $v$ are given in equations Eq. (6) and (7) respectively.
Example: Find the series solution of $2 x^{2} y^{\prime \prime}-x y^{\prime}+(x-5) y=0$

ANS: $u=x^{-1}\left\{1+\left(\frac{1}{5}\right) x+\left(\frac{1}{30}\right) x^{2}+\ldots \ldots.\right\}\left(\right.$ taking $\left.a_{0}=1\right)$
$v=x^{\frac{5}{2}}\left\{1-\left(\frac{1}{9}\right) x+\left(\frac{1}{198}\right) x^{2}+\ldots \ldots\right\}\left(\right.$ taking $\left.a_{0}=1\right)$

## EXERCISE

Find the power series solution of the following differential equation by Frobenius method

1. $2 x y^{\prime \prime}+(3-x) y^{\prime}-y=0$
2. $2 x^{2} y^{\prime \prime}+x y^{\prime}-(x+1) y=0$

ANS: $\left\{\begin{array}{l}1 . u=1+\frac{x}{1.3}+\frac{x}{1.3 .5}+\ldots \ldots . ., \quad v=x^{-\frac{1}{2}}\left\{1+x+\frac{x^{2}}{2^{2} 2!}+\ldots . . .\right\} \\ 2 . u=x\left\{1+\frac{x}{5}+\frac{x^{2}}{70}+\ldots \ldots . .,\right\}, \quad v=x^{-\frac{1}{2}}\left\{1-x-\frac{x^{2}}{2}+\ldots . .\right\}\end{array}\right)$

